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I. INTRODUCTION

Nonuniform metallic waveguide transitions have been the subject of

many theoretical investigations. A general solution was first given by

Stevenson,1 who expanded the field intensities into a series of cross-

sectional wave functions. Later using the same approach, Schelkunoff,
2

Reiter 3 and Katzenelenbaum4 independently derived the generalized tele-

graphist's equations; thus describing waveguide transitions as an

infinite set of coupled transmission lines. Solymar 5 transformed these

into a set of differential equations for the amplitudes of the forward

and backward traveling waves. The power in the eauations these men

*derived remained dormant until high speed computers could be implemented

to solve them.

The need to efficiently desi.gn nonuniform waveguide transitions

exists in almost every facet of electromagnetics engineering. These

devices are designed to maximize power transfer from one size waveguide

to another and are called impedance matches or transformers. Generally,

a costly, time-consuming "build and test" method is used to optimize the

power reflection and transmission characteristics of impedance matches.

Numerical methods can be used to replace this procedure by a practical

computerized design tool.

The purpose of this work is to outline the theoretical and numer-

ical aspects of developing a nonuniform waveguide transition design

tool, and use them to write a computer program that models dominant mode

rectangular and ridged waveguide tapers.

-1



Theoretical and numerical aspects of design tool development are

discussed in Sections II and III, respectively. Section II summarizes

the work of Reiter and Solymar and outlines a method by which their 7

formulae can be used to obtain a transition's scattering matrix. In

Section III, aspects of numerically modeling the theoretical formulae of

Section II are presented in parallel with the development of the domi-

nant mode computer program for double-ridged waveguide transitions. The

final section shows that computed standing wave ratios (VSWR) of ridged

and unridged transitions agree well with experimentally measured values.

I-

h .
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II. A THEORETICAL ANALYSIS OF THE NONUNIFORM WAVEGUIDE TRANSITION

A

Presented herein is a formulation that shows how the scattering

matrix of a tapered waveguide can be obtained from a set of transmission 4

line equations that model it. A review of the work performed by Reiter3

bridges the gap between the Maxwell equations and the infinite set of

voltage-current differential equations that model a waveguide. A sum-

mary of Solymar's 5 work shows how these differential equations were

modified in order to describe the transition in terms of forward and

backward traveling waves. The transmission matrix obtained by solving

these traveling-wave equations is algebraically transformed into the

scattering matrix of the taper. The formulation begins with a concise

mathematical and physical description of the taper.
4,

A. A Description of the Problem

The problem is to determine the scattering matrix of the tapered

waveguide transition depicted in Fig. 1. The transition consists of a

tube bounded by a conducting surface such that a plane perpendicular to

the z-axis cuts this surface in a closed curve C(x,y,z). The region cut

'4 out by C is the cross section of waveguide denoted by A. Both A and C

are considered to be continuous functions of z. The symbols n and z

denote the normal unit vectors to C and A, respectively. s is along C

and is perpendicular to both n and z. O(x,y,z) is defined by the angle

between z and a line in the n-z plane which is tangent to the waveguide

wall at A. Waveguides Guide I and Guide 2 are fed by some linear combi-

nation of pure modes and are assumed to extend infinitely beyond z 0 0'.

-3-
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iN /Fig. 1. Physical and mathematical description

of a nonuniform waveguide transition.

and z s L. These definitions are next used to model a transition by

current-voltage differential equations.

-m 
p

B. The Generalized Telegraphist's Equations

This review of Reiter's work shows that an electromagnetic wave

propagating within the confines of a waveguide is equivalent to a system

of coupled transmission lines. Reiter derived this system of transmis-

sion line equations by enforcing waveguide wall boundary conditions upon

4-

% -.



the Maxwell equations. A review of the derivation begins with the fact

that all fields in a nonuniform waveguide can be broken down into longi-

tudinal and transverse parts as

E(x,y,z) = E t(x,y,z) + E z(X,Y,Z) ()

Reiter assumed that the transverse electric and magnetic field

+
components could be expanded in terms of normalized field functions e

as

E = Vp (z) e (xy,z) (2)

t

p=1

Ht = Ip(Z) e(X,y,z) () 4
p p '.p= 1 i

The expansion coefficients Vp(z) and I (z) are the transmission linep p

voltage and current coefficients. The field functions are defined for

transverse electric TE modes as

e =zxVt p (4)
tp

and for transverse magnetic TM modes

e -(5)
p = +t *p (1..

The normalization condition for these field functions is

-5- V

", + m , "-' • -. V. E , • tV ' 
'J
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aa fA(z) Je; J2 da-1 (6)""

V is the transverse gradient operator and p is the mode's longitudinal, t p

field function. 4p is proportional to Hz and Ez for TE and TM modes,
p

respectively. Et and Ht are also functions of 4.

The waveguide wall boundary conditions are enforced upon the

Maxwell equations through *, and h. 4p and h are obtained by solving j
the transverse Helmholtz wave equation,

+ t2  2
(V + h - 0 (7)

,p 
p

The boundary conditions on * are 4 = 0 for TM modes and a4 /3n = 0 for
P p p

TE modes. There are an infinite number of field configurations 4 which

satisfy each of these boundary conditions. Each of these field config-

a urations has a corresponding eigenvalue h. As stated in Eqs. 2 and 3, a

linear combination of these modes is sufficient to describe the electric

and magnetic fields of a bounded wave.

By using various mathematical identities in conjunction with Eqs.

I through 6, the Maxwell curl equations,

V X E - -jW1 H

+ + 4
V x H- jWe E (8)

and

'E 0

+ .
V H -0 (9)

-6-
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are transformed into an equivalent system of coupled transmission line

equations given by

dVi  "TV

.i -dz " ic i l- TpVp""I
• d Ii  i  ',i i

i

The- susrpt n +I T~ 1 (10)

The subscripts i and p denote arbitrary modes. 8i and Ki are the mode

propagation constant and wave impedance, respectively. The Tpi and Tip

voltage and current transfer coefficients are listed in Appendix A. j
Equation 10 is the lossless form of the Generalized Telegraphist's

Equation. It shows that a waveguide is equivalent to a coupled system

of transmission lines. This system of voltage-current equations can be

rewritten in a form which describes propagation within a taper in terms

of forward and backward waves.

C. The Normal Mode Equations

By choosing an appropriate linear combination of the transmission

line voltages and currents, Eq. 10 can be transformed into a system of

differential equations written in terms of the amplitudes of forward and

backward traveling waves. It is customary to choose a linear combina-

tion that makes the magnitude squared of the mode amplitudes propor-

tional to the time average power carried.

The linear combination of mode voltages and currents given by

4"-:

-7-
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Lid
+ (8 ,:+ 1/2 V p
A, 8- ( + K Ip

p p p pp

A- (8 K l- /! 2 (v - p I11)
p p p p p

is defined such that the net time average power flowing in the +z direc-

tion at any point z is given by

P,) "Re E x da ""Re V I

2 A2 P-2 p

= 4 A (z)I - IAp(z)Ij 12

Equation 11 can be inverted to give Vp and Ip as

1/2 +V - (2 K (A + A)Vp p P p P.

I (2/, )-/2 (A2/- A-) (13
p P p

"4
:.1

When Eq. 13 is substituted into Eq. 10, Solymar's normal mode form of

the Generalized Telegraphist's Equations results:

dAi + 1 (n i i) "d = -i BI Ai 2 dz A

dz J8 + i A - 2 dz A i+ (S + + -
iA P+ S ipA)

ip p ip p t)!dA1  -jBA dI i

dzi1 2 dz i

+I(-A ++ S+ A-) (14)
p ip p ip p

-8-

S. . . . . . . . .
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Sip and S are the forward and backward coupling coefficients given in
p ip

Appendix A. A and A are the amplitudes of the forward and backward
i i

traveling waves, respectively.

These normal mode equations reveal much about how waveguide modes

propagate and interact. ai is the mode pripagation constant. An axial

change in the waveguide impedance K causes mode reflection. The S" ip

- coefficients are responsible for self and intermode coupling. They

depend on the boundary fields and cutoff frequencies of the ith and pth

modes and may be interpreted as arising directly from geometric effects.

*- As seen in Appendix A, it is convenient to employ the convention

of enclosing TM and TE mode subscripts with parentheses and brackets,

respectively (e.g., TM(II) and TE When this notation is applied

to the Helmholtz Wave Equation, the coupling coefficient and mode field

solutions are written for TM modes as

2' h 220
t (p) +  (p) (p) =0

( = 0 on C(x,y,z)

h" (k 2  82 1/2

h~(p) -()

' 8'

(P) (P)J

ic.=8 / ,,,

C-.** K(p) (p)

."

( E (15)

and for TE modes as

-9-
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+2 2

t  [p] + [p] [p] - 0

( = 0 on C(x,y,z)

hp] = (k2  2 1/2

,[p ] =

. [ ] H (16)

where

!:']2 2-

k = w UE

..

To summarize, Maxwell's curl equations have been transformed into

normal mode equations. Reiter's work made it possible to represent a

waveguide by an equivalent system of coupled transmission lines. An

appropriate linear combination of transmission line voltages and cur-

rents resulted in a system of equations that describe energy propagation

in waveguides in terms of forward and backward traveling waves. These

normal mode equations are next used to obtain the scattering matrix of a

tapered waveguide.
j.

,.4.

j
-10-
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D. A Scattering Matrix Formulation

The method used to compute a taper's scattering matrix is pre-

sented in three parts: 1) convert the normal mode equations- from com-

plex to real form, 2) formulate a transmission matrix T and 3) algebrai-

cally transform T into the scattering matrix S. The first step in this

formulation can be bypassed if a complex variable differential equation

solving routine is available.

1. Converting Complex Normal Mode Equations into Real Ones

Since the differential equation solver used in this work deals

with real variables, it is necessary to convert the complex normal mode

equations into real ones. Equation 14 can be written as

= I +

A11 M12 A

d
" d-= (17)

dz
4': - = =22 -

A M M A
21 22

Both A and M can be separated into real and imaginary parts,

-' ±~r +±i
A A + JA

pr +M ;i (18)
pa pq pq

where the r and i superscripts denote real and imaginary parts, respec-

tively. Substituting Eq. 18 into Eq. 17, carrying out the multiplica-

tion and separating real and imaginary parts yields

L%
04

L. , -" . . '. ' ' + '' -' '""- . " " ." +" +" "" " " """ . " . -. . . . ,". " ,""" " . • ' . • . . " -" " •"



=+ r ri +i

A - -

A1 1 12 412 A

=ir i -1 12 12A Ml Ml N1 2 A':

dz
'" -- -( 19 ) :!

[" dz -r r 1r -M1 2-2"r-

Mr -M M -FM A1-
21 21 22 22

;r A=i ;r
A MM MM A

21 21 22 22L .. J L -J L

In order to distinguish the complex normal mode equations from the real

ones, Eqs. 17 and 19 are rewritten as

d + =+
Zx = Mx

* and

d + =+
dy - By (20)

z+

respectively. For N modes, the length of x (complex) is 2N and the
-=

length of y (real) is 4N. The dimensions of M and B are 2N x 2N and

4N x 4N.

Equation 20 is a real matrix form of the normal mode differential

equations used to model a waveguide taper. The 2N coupled complex

differential equations (2 equations per mode, one for each of the for-

ward and backward waves) have been changed into 4N real equations. The

mathematical model has been reduced to a form suitable for numerical

solution. The next step is to obtain solutions and transform them into

a transmission matrix for the tapered waveguide section.

I.'.

I.. -.12 -... ,
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2. Formulating a Transmission Matrix

The transmission matrix is obtained in the following manner: 1)

use orthogonal initial condition vectors to solve the normal mode matrix

differential equation and 2) algebraically convert initial condition and

solution vectors into T. Figure 2 shows a two-port device for which the I
incident and transmitted waves are expressed in terms of normal mode

,.44 amplitudes.

"+(0) incident A(L) transmitted

PO 0-

z 0 Transition z : L

A-(O) transmitted A-(L) incident

Fig. 2. A signal flow diagram expressing incident
and transmitted waves in terms of normal
mode amplitudes at z = 0 and z = L.

For this two-port device, the normal mode differential equations

depict a two-point boundary value problem (BVP). The known (incident)

'-' .and unknown (transmitted) signals exist at both ports. Standard differ-

1 ential equation solving routines solve initial value problems (unknowns

at one boundary, knowns at the other). By carefully choosing the ini-

tial condition vectors, these routines can be used to solve the BVP.

- 13 -
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a. An Orthogonal Set of Initial Condition Vectors

Any set of mode amplitude initial condition vectors can be used to

obtain the transmission matrix; however, it is mathematically convenient

to choose the orthogonal set given by

1 0 0 0

O 1 0

0 0 0 i

O 0 0 0.

O 0 00

0 0 0 0

I ".

'-0 0 0 0

11

-p. .-

a.R

6%

0 0 ,--



YN~~~~~~~l~ (0)-v -- v- y w-()y2N1() N 0 --(1

. o o o o

0 0 0 0

0 0 0 0

%-

S0 0 0L-A -1' L .

As ca be senfo q 9 h is nta odto etr or

sn+ ()= icdnt(0) .... - 02NI() i - amplitu (21)

phse1 0 0 0
.. ... ,0 ••

o 1 5

• • 1 0

o 0 0 1

o 0 0 0

As can be seen from Eq. 19, the first N initial condition vectors corre-

" ','" spond to incident modes (at z 0 ) having unit amplitude and zero

%'"'? .phase. Equation 21 shows that for these modes, the ith element of . (0)

~is one. Likewise, the second N vectors correspond to reflected waves

. (at z = 0) with unit amplitude and zero phase. By using these initial

• 'p -15 -
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conditions to solve Eq. 20, one obtains the following set of linearly

independent solution vectors at z L,

y1(L), Y2(L) ... Y2 Nl(L), Y2 N(L) (22)

As a matter of clarification, there are N modes, each having

forward and backward waves with real and imaginary parts. This makes

the length of the vectors in Eqs. 21 and 22 equal to 4N. Since each I
mode has an initial condition on its forward and backward components,

+ +

there are 2N initial condition and solution vectors. y(0) and y(L) are

next combined to obtain T.

b. The Transmission Matrix

The transmis.ion matrix is constructed by algebraiclly joining

linear combinations of the initial condition and solution vectors. This

process begins by transforming these vectors back into their complex

form; hence, there are 2N initial condition and solution vectors each

containing 2N elements. To denote this change, the notation of Eas. 21

and 22 is changed to

Fx 1(0), x2(0) .... x2N_(0), X2N(0) (23)/.

1 2-

The first N solution vectors correspond to the transmitted portion of

the forward waves. The second N solution vectors represent the
backward waves that would be needed at z = L to realize the ini-
tial conditions on the backward waves at z 0.

- 16-
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and

xI(L), x2(L) ... , X2NL), x2N(L) (24)

respectively. A general solution and initial condition vector can be

written as a linear combination of the vectors in Eqs. 23 and 24,

2N
X(O) = I C x (0) (25)

p=l P p

2N
X(L) = I C x (L) (26)

p=1 p p

- Equations 25 and 26 may be written in matrix notation as

x(O) = U C (27)

x(L) = T C (28)

where the columns of the complex matrices and are made up of the

solution and initial condition vectors, respectively. C is a vector

* made up of the Cp coefficients. Changing y(0) of Eq. 21 into its com-

plex form x(O) of Eq. 27 shows that U is the identity matrix

u= i (29)

Solving Eq. 27 for C gives

-17-
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N+

= U x(0)

X(O) (30)

Substituting C into Eq. 28 yields
-'.3'

x(L) x T (O) (31)

relates the mode amplitudes at z = L to those at z - 0 and is identi-

cally the transmission matrix. It has been constructed by using matrix

algebra to properly combine an orthogonal set of initial condition

vectors for the taper's normal mode equations. The scattering matrix

can now be determined by viewing Eq. 31 in terms of incident and

3. reflected waves.

3. The Scattering Matrix

The scattering matrix is algebraically obtained from the transmis-

* sion matrix by changing from the notation of forward and backward tray-

eling waves to that of incident and reflected signals. Figure 3 shows
4 4

forward mode amplitudes at z - 0 and z - L with the labels al and b2,

respectively. Likewise, the backward modes at these planes are labeled

tl and 12. The subscripts I through N represent the N propagating

modes. In this signal flow notation, "a" and "b" represent the incident

and reflected components of a mode's energy. For example, when the TE1 0

-18-
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all 1 -- b21":a2 -0 4' (0) A(L) 0 b
* I- b22 3a13  F2-v- b23

a lN * v__ _,_-__ . ,,10 b2 N
x(O) I(L) -'-"L. b I,

b1  -d _________ a2 1
b12  4d a22

3  . a23
b•A-(O A (L) _ a2N

,, b N  a 2 -- •a N  ?,
.4.

Fig. 3. Scattering signal flow diagram for

a nonuniform waveguide transition.

mode is fed into a transition from both ends; all and a21 are propor-

tional to the incident power at ports 1 and 2. bli and b21 are likewise

proportional to the reflected power.

Obtaining S from T is a matter of algebraically transforming Eq.

31 with the notation of Fig. 3 incorporated into it. Replacing x in Eq.

31 by a and b yields

rI i r2b2 Ta

. -(32)

-T21 T22

The scattering matrix relates incident signals to reflected ones. It

can be obtained by solving Eq. 32 for bl and b2,

-19-
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bl- T + + a2
22 21 22

b2 -1T a2 (33)b2-T 11 - 12 T22  21) 1+ 12  22

Writing this in matrix form

++
-T22 T21 T22  al I 112 al

= -1 - -l +. a24.

b2 T r T T T T a2 SS a2
11 12 22 21 12 22 21 22

(34)

and reducing it to a single equation yields

b =Sa (35)

where S is identically the scattering matrix of the tapered transition.

In summary, Maxwell's equations as they apply to a nonuniform

waveguide transition, have been solved to obtain a multimode scattering

matrix. Reiter's transmission line model of a waveguide was used as the a.4

starting point for developing a set of normal mode equations. These

were obtained by writing linear combinations of the transmission line -',-

voltages and currents that defined the amplitudes of forward and back-

ward traveling waves. The transmission matrix was expressed as an

algebraic combination of the initial condition and solution vectors of

these traveling wave equations. Finally, the signal flow notation of

a'

-20-

16, -.2. '.'4. - -.- -r' 2 . - -.. .'.*. . 'a.. ., , . .- . .. , . - . . - . .. . . . , . . ."

,4 ' -. -' ) J ' X% ,% .'- - % L% % % . " % ' ' "•" "." -.- . . ' .. " . * -w . .""'" " ""-'



incident and reflected waves was used to transform T into S. The next N

section shows that with current numerical methods, this formulation can

be used to obtain the scattering matrix of transitions in rectangular

and double-ridged waveguides.
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III. NUMERICAL DESIGN TOOL DEVELOPMENT FOR DOUBLE RIDGED WAVEGUIDES

Two major aspects of writing a computer program that is capable of

modeling an arbitrarily shaped waveguide transition are: 1) ascertain

the axial dependency of the eigenvalues and coupling coefficients for

each mode and 2) obtain the transition scattering matrix by solving the

coupled system of differential equations. To illustrate the practical-

ity of implementing the technique presented in Section II, a code was

developed (Appendix B) that models continuous symmetrical double-ridged

waveguide tapers operating in the TE10 mode. This section gives a

detailed description of how the finite difference method was used to

compute coupling coefficients. It also shows how the single mode

coupled differential equation solutions are transformed into S.

A. Numerically Obtaining the Coupling Coefficients

Computing the axial dependency of the coupling coefficients is

described in three parts: 1) numerically solving the transverse

Helmholtz Wave Equation, 2) showing how these solutions are used to

obtain the coefficients and 3) using a cubic spline to approximate an

axially discrete coupling coefficient profile by a continuous one. For

some waveguide cross sections, solutions to the Helmholtz Wave Equation

+2 2 (6p+ U pp 0 (36) ;o

t p pp

th

can be expressed in analytical form. In general, however, the p t

mode's eigenvalue u and eigenfunction 4 must be obtained numerically.
P P

-22-

&%



. ,.

1. Numerical Aspects of the Transverse Helmholtz Wave Equation

Sylvester's 6 classic finite difference scheme was used to find the

TE1 0 mode eigenvalue and eigenfunction of a double-ridged waveguide. A

discussion of methods that can be used to analyze other geometries is

given by Davies7 and Ng.8  The following is a brief summary of the way

Sylvester's method describes the cross-section shape, the Helmholtz

equation, its boundary conditions and a solution procedure to the com-

puter.

The finite-difference method uses a rectangular mesh to mathemat-

ically model the geometry of Fig. 4. In order to keep the analysis

simple, a square mesh was used and symmetries of the TEl 0 mode were
10~

utilized. The dotted vertical and horizontal lines represent planes of

even and odd Hz symmetry, where the z-axis is into the page. Figure 5Iz

shows a mesh laid over a quarter section of double-ridged waveguide.

Vertical symmetry

* , plane (even)

'."

.. ............... -- ---- -- -- --------,- - a
3n

Horizontal symmetry
plane (odd)

Fig. 4. Cross section of a double-ridged waveguide.
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0-6-6-6-6-*6 -

r.. . --Aq--O+

Fig. 5. Computer mesh for a quarter section of a double-ridged
waveguide. Darkened lines indicate conducting boundaries.

The nodes of the mesh are described to the computer in matrix form.

They are the points at which the scalar field a H is computed.
[1 1 z

The field form of the Helmholtz wave equation must be replaced by

a discrete form in accordance with the physical mesh. This is done by

expanding the Laplacian operator in Eq. 36 in terms of a truncated two-

*dimensional Taylor's series. The result for node 5, which has four

nearest neighbors that do not touch the conducting boundaries is

2

4- --,- -+"4,- +"0 (

1P 2 *, + iS) + [(u hi) -4] 'S5 =0 (37)

pp

between nodes. The form of Eq. 37 chajiges for nodes on conducting

* boundaries and symmetry planes.

24-
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Symmetry plane and boundary points are handled in such a way as to

enforce two rules: 1) the normal derivative boundary condition for TE

modes and 2) the total longitudinal flux of the guide must be -zero. For

the TE1 0 mode, the normal derivative of the Hz field must be zero along

both the odd symmetry plane and the waveguide walls. This is equivalent

to requiring that

a0- 0 (38)

since Hz is proportional to P. Equation 38 can be written in its cen-

tral finite difference form for node P8 as8

a 8 ' 7 -

an 2h 0 (39)

which means

6 =7 (40)

The node's exterior to the conducting boundaries and odd symmetry plane

make it possible to numerically enforce the general form of Eq. 40.

Quite a different tactic is used to handle the even symmetry plane.

In order to prevent the numerical method from giving solutions

representative of the impossible TEo0 mode, the total longitudinal flux

of the guide must be zero (V B = 0). This condition can be enforced

by requiring that

-25-



4- - 0

and

2 * 0 (41)
3n

at the even symmetry plane. The program in Appendix B encodes the

second requirement by setting the average value of the interior nodes (h

away from this plane) equal to 0.5.

By writing Eq. 37 at the m (interior, conducting boundary, even

and odd symmetry) nodes, one obtains m equations involving m + I

unknowns. This is now a matrix eigenvalue problem,

A X (42)

where the eigenvalues are

X (U h)2 = (21Th/X) 2  (43)
p

and X is the cutoff wavelength. The eigenvector will be made up of the
c

field points 4' 42' 43' " The matrix eigenvalue problem can now

be solved on a computer.

The matrix eigenvalue problem is solved using a version of the

inverse power method called doubly iterative successive over-relaxation.

In this technique, computed values of i are used to obtain an approxima-

tion for up. The process continues until an iteration is reached for

which the previous 4 and u are within some user specified range of the

- 26
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present and U. The process begins with a guess for u that is pref-

erably less than the actual up. Equation 37 is computed at each node

and is found not to equal zero. Instead, numbers called residuals (R)

are obtained. They are used to sequentially replace each value of

with the old value plus a correction dependent on the residual,

wR
Snew old o

o =o + 2 2 (44)
(4- uh)

p

where 1 < w < 2 is the over-relaxation factor. There is an optimum

value of w which gives a final solution in the least number of itera-

tions. Unfortunately, it must be obtained empirically. The new field

values are, of course, wrong since a wrong initial guess of up was used.

The Rayleigh coefficient concept uses the new values of P to
2

obtain a more accurate value of up. The Rayleigh coefficient u is
p p

obtained by integrating P over the waveguide cross section as

2 - t da
u (45)

P f *2 da

Note that the discrete form of da is different for the nodes A, B, C,

7 and D shown in Fig. 5. The area element da becomes Aa . The code in

Appendix B assigns Aa values of 0.25 h2, 0.5 h2, 0.75 h2, and h2 to

nodes like A, B, C, and D, respectively. The finite difference equiva-

lent of Eq. 45 is

u 2 h 2  -L iqj (-i+l j + iilj + _ij + i,-1 1 4 j (46)
p

27
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The summations are over the interior and boundary points of the guide

cross section. The ip 's are implicitly multiplied by the appropriate

value of Aa. Both Fig. 6 and the procedure outlined below describe the

doubly iterative calculation scheme used to obtain (u h)2 and p. The
p

final eigenfunction must be scaled to match Solymar's normalization as

shown in Appendix E.

1. Assume initial values of ( h2 and P.

2. Use Eqs. 37, 40, 41, and 44 in several relaxation passes to

relax the point potential-function values i to a reasonable

degree.

3. Use Eq. 46 to obtain an improved estimate of (u h)2

* p

4. All nodes exterior to the conducting boundaries and odd sym-

metry plane are set equal to the interior points opposite

them (i.e., i 6 = p7J" Nodes along the even symmetry plane are

held at 0 = , while nodes 1 mesh unit away are held at an

average value of 0.5.

5. Iterations will be stopped when both the largest field residue

and the relative difference between the two most recent values

)2of (u h) are less than their convergence criterion.

.28
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Discretization of both the double-ridged waveguide cross section

and the Helmholtz Wave Equation has made it possible to describe the

problem to a computer. By enforcing the appropriate boundary conditions

and applying the five-step solution procedure, the TE1 0 mode eigenvalue

ujO and eigenfunction 10 can be obtained at any particular cross

section within the transition. These numbers are then used to find the

coefficients that couple the incident and reflected parts of the TEIo"

mode.

2. Computing Coupling Coefficients for the Dominant Mode

The problem at hand is to find the coupling coefficients that are

__. needed to describe TE1 0 mode propagation in a double-ridged waveguide.

" The coupling coefficients O and K can be readily computed using Eq.
10 10

16 and a knowledge of ul0 (h[1 0 ] in Eq. 16). According to Eqs. 14 and

A.10, he only Sip coefficient needed since S[1 0][1 0] is

zero. Equation A.6 shows that this coefficient can be written as an

integral around the waveguide boundary C(x,y,z),

S 0][l0] 2 f  tan e 101 ds (47)

where ds is an element of length along C(x,y,z) and 6 is defined in Fig.

1. The four factors which contribute to a successful computation of

S[101[10] are: 1) correctly assigning a value to tan 0, 2) finding

tangential derivatives of ip at the boundaries, 3) accounting for corners

while integrating along the boundary and 4) choosing an appropriate

-30-
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value for the node spacing h. The first function in the integrand of

Eq. 47 is tan 8.

a. The Definition of Tan e

The value of tan 8 depends upon the x-y position on the boundary

and the axial location-z of the cross section. For example, the program

in Appendix B requires four values of tan e to describe the taper flare,

one along each of the boundary sections shown in Fig. 7. Equation A.1l 1'

V

17.
....................................................- z' x

C(x,y,z)

I%

4

Fig. 7. Quarter section of a double-ridged waveguide
showing the four conducting boundary edges
along which Sis computed.

defines tan 0 using the notation of Fig. 1. According to this defini-

tion, tan 0 is negative at points where the boundary slopes toward the

z-axis. Conversely, tan 0 is positive for those points where the bound-

ary slopes away from the axis. The second function in the integrand of

Eq. 47 depends upon P

-31 -
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b. The Tangential Derivative of i",

Cubic splines were used to evaluate the tangential derivative of IJ'

along the four boundary lines shown in Fig. 7. In this method, a cubic

polynomial is fit to the boundary field data set [(S1 ,*1), (S2,v2), ... ,

(S,)] as
n'n

i*(s) - R(s) - 4i + Bi (s - Si) + Ci (S -Si
) + Di(s -Si) (48)

where s is any physical point along C(x,y,z) defined on the interval

between S1 and Sn.  The spline coefficients Bi, Ci and Di are computed

from the [Si, i] data set. The tangential derivative of the boundary

field can be obtained for any boundary point s by evaluating the differ-

entiated form of Eq. 48,

a* 3 dR(s) Bi + 2Ci (s - + 3 ((49)"
as ds iS) 3 i, (49)

The beginning and end points of the four [S , i] data sets coincide with

the end points of the boundary sections shown in Fig. 7. This segmenta-

tion of a/as was necessary since tan e is discontinuous at the wave-

guide corners.

c. Dealing with Corners
* p'.

In order to avoid problems with a discontinuous integrand at the

corners, Eq. 47 was split into four parts. The Gauss iuadrature inte-

gration algorithm was used along each of the four boundary segments.
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The sum of these integrals was then multiplied by four to account for

the entire boundary. Since for ridged waveguides, there is no analyti-

cal solution for S[1o][10] and thus no way of checking computed values,

the simpler case of a rectangular waveguide was tested.

d. Dependency of S on h

The accuracy of the S l010] calculation depends upon both the

precision of the computer used and the node-to-node spacing h. The pro- I
gram in Appendix B was used to compute S for the rectangular

[1011101

waveguide shown in Fig. 8.

,..4
4 z

* a

Fig. 8. Rectangular waveguide used to test the

ridged waveguide program, b/a - 0.5.

Table I shows how S [1][10] approaches the analytically obtained value

(derived in Appendix D) of 0.1 as the ratio of h/a decreases.
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Table 1. Dependency of S[10][10] on h/a.

h/a S[l [I01 Error (

0.05 0.0912 8.8

0.025 0.0953 4.7

0.0125 0.097589 2.41

0.00625 0.098837 1.16

0.003125 0.099640 0.36

0.0015625 0.096163 3.837

The optimum accuracy of 0.36 percent error is a result of machine

precision. The results in Table I were calculated in single precision

using an HP1000 computer. Had the computations been performed using

double precision, the optimum value of h/a would have been much smaller

and the accuracy of S much greater.
[10](101

The results of this computer program test can be extended to the

ridged waveguide case. The finite difference numerical algorithm used

to obtain the eigenvalues and eigenvectors has been successfuly tested

against Cohn's9 results for ridged waveguides. Since the computer

program's accuracy is limited by the working precision of the machine,

it is reasonable to assume that results accurate to within 0.3 percent -.

can be obtained for waveguides containing ridges.

The TE1 0 mode coupling coefficients Kc, 8, and S [10][10 have been -

shown to depend upon the geometrical and electrical characteristics of

the particular cross section in question. These coefficients are now

one step away from their final form.

- 34 -
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3. Piecewise Continuous Coupling Coefficients

In their final form, the coupling coefficients are represented by

piecewise continuous functions of axial position z. This is accom-

plished by computing them at discrete points Zi along the transition.

The data sets [8i ,z,. [K1,Z1 ] and [S-[oIi,ZI] are fit to a cubic

spline similar to Eq. 48. The number of points chosen to represent a

specific transition is left to one's discretion. Large changes in

waveguide geometry which occur within one axial wavelength will necessi-

-: tate a finer discretization in order to accurately capture the

behavior of the coefficients.

In summary, the numerical design tool for the TE1 0 mode double-

ridged waveguide has been developed to the point of representing the

coupling coefficients as piecewise continuous cubic splines. The normal

mode equations can now be solved for the transition scattering matrix S.

B. TE1 0 Scattering Matrix for a Double-Ridged Taper

.~ According to Section 1, the TE1 0 mode system of coupled differen-

tial equations can be transformed into the transition scattering matrix

in three steps: 1) convert complex equations to real ones, 2) solve the

real equations to obtain the transmission matrix T and 3) use T to

obtain the scattering matrix S.

1. TE1 0 Mode Equation Conversion Complex to Real

In order to use the differential equation solver DESOLVO listed

in Appendix B, the TE1 0 form of Eq. 14,

-35-
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N dA + 1 d(lnKc) -
-j 2 dz A + S A

dz d

.dA A +- d(In) + - A+ (50)
dz 2 dz +S

must be converted into an equivalent real matrix equation. The TE 10

mode bracket notation [10] used in Appendix A has been dropped for the

sake of clarity. Equation 50 may be expressed in the matrix notation of

Eq. 17 as

- I d(lnK) +

2 dz

;' dd- (51)

I d(Inc) +A

-A-_ S- 2 dz +

where the + and - superscripts denote forward and backward waves,

respectively. To simplify the notation, Eq. 51 can be converted into

the following form

.A+ 1 1  1 2  -.

d
.= (52)

A H2 1  M 2 A

Since both the A's and the M's have real and imaginary parts, they

may be rewritten as

-J
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S.A ±  A±r + Ai i

• .= ...

* r

mn mn +jmn (53)

.1 where the r and i superscripts refer to real and imaginary parts, and

the m and n subscripts refer to elements in the m th row and nth col-
1*4

umn. Applying Eq. 53 to row 2 of Eq. 52 gives

4,4

..... Ar +1) rii

d-(A + ' 1 +. )( r+jA )+(N2 + M 2 )(r+. '

(54)

Carrying out the multiplication and equating real and imaginary parts

yields

d -r r +r i +i r -r i -i
A =M A -M A + M A -M A

-dz 21 21 22 22

d -i i +r r +i + -r r A-
d 21 21 22 22

Performing this set of operations on row I of Eq. 52 will give a set of

equations similar to Eq. 55 with M2 1 and M2 2 replaced by MI and MI2,

respectively:

d +r r +r iI +i -r i -
dzA =MIA - N11  2 A -N 1 2 A

d A+i i +r r A+i i -r r -i
A- = M A + MlA + M2 A + M12 A (56)
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Equations 55 and 56 can be set into matrix form as

+r r M -M +r
A1 N- 1 1  12 12

+i I r i r
A MM A11 11  12 12

d (57)
dz A-r r i r i A-r

21 - 2 1  22 22
.4.

- i  i r i r -i
A r M M AL21 N2 1  22 22

The elements of this matrix can be written in terms of the elements in

Eq. 51.

r
M 0

M11

Mr=0
22

M =+8
22
21 0

M r S- d(lnK)

12 2 dz

j'.4' 22-

M - (58)
12

M r =- 1 d(ln ) 3

. 4 '1 
2 d z "

MI = 0 (58)
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Substituting Eq. 58 into Eq. 57 results in the real matrix form of the

TEIo mode coupled differential equations.

,:.A+r[ 0 +IB(z) S (z)- - dKz) Ar

L d(InK(z) +i
(z)- 0 dz

d

Ar -- d1 nq) 0 0 -B(z) A- r2 dz

A-r1) 0 0(dz(inK(z)A-i

A 0 s-(z) 1 - +a(z) 0 A -'
2 dz

(59)

Equation 59 can now be used to obtain the transmission matrix.

2. Formulating the Transmission Matrix

Extracting the TE1 0 mode transmission matrix from Eq. 59 is a two-

step process: 1) solve it twice using orthogonal mode amplitude initial

condition vectors and 2) express the transition's mode amplitudes at the

output in terms of those at the input.

The orthogonal initial conditions y and y shown in Eq. 60 repre-

sent forward and backward waves at the transition input with unit ampli-

tude and zero phase.

3N9
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1 0

0 0

y (0) = Y2(0) = (60)

01

0 0
L- J

The first two rows represent the real and imaginary parts of the forward j
wave; likewise, the second two rows represent the backward wave. Solv-

ing Eq. 59 with these initial conditions yields the following linearly

independent solution vectors at z L,

a e

b f

Y(L) = Y2 ) = (61)

c g

d h

These initial condition and solution vectors are algebraically

transformed into the transmission matrix as follows. The real form of

the problem is returned to its original complex form by rewriting Eqs.

60 and 61 in terms of the complex variables u, T and x.
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F141
+ jO u I

X (0) = (62a)

0 +JO u

x 2(0) (62b)

1 +jO u22J

"a + jb F T",
x ~ d LT~ (62c)

TI 112-

c + jd T

x 2 (L) = (62d)

L J L i
The general initial condition vector is a linear combination of the

initial condition vectors in Eq. 62a and 62b,

2 11 12
XL(0 ) C X2(0) [12

P p p 1 2
2 g+jT 2.-,

'CU = I: :2 L: =! (63)

is the complex identity matrix. The general solution vector can he

written in terms of Eqs. 62c and 62d in a similar fashion,
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2 F11 1
x (L) = x C1  + C2

LT21 T 2 2 j

1 1 1 2 C1 = d

. T C (64)
,.T 2  T2 C2

21 22 2

+

The fact that C is common to both Eqs. 63 and 64, makes it possible to

express forward and backward mode amplitudes at z = L in terms of those

at z =0.

x (L) T x (0) (65)

Equation 65 is in the form of Eq. 31 where T is the TE1 o mode transmis-

sion matrix. The transmission matrix is finally used to obtain S.

3. Transmission Matrix to Scattering Matrix

The TEl0 mode scattering matrix S is obtained by rearranging Eq.

65 in terms of the scattering notation of incident and reflected

waves. The process begins by rewriting x in Eq. 65 in terms of A+ and
A-,

A (L T T A (0)

A-(L) j T21 T22 LA (0)

-42-
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Figure 9 illustrates Eq. 66 in terms of the scattering notation of Fig.

3.

A (0) = al (L) : b2

Tapered transition

A-(O) = bl A-(L) = a2

Fig. 9. A single mode illustration expressing A+ - A- nota-

tion in terms of incident and reflected waves.

- Equation 66 can be rewritten in scattering notation as

b2 T T al
11 12

(67)

O J

a2 T T bI
L L21 22JL J

Notice that Eq. 67 is in the form of Eq. 32, and, as expecte,, for a

single mode analysis, the matrix and vector notations are gone. The

general expression for transforming transition matrices into their

corresponding scattering matrix given by Eq. 34 can be applied to Eq. 67

, with the following result,
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"b I-1 -1
bi -T T T al

22 21 22

(68)

-1 -1 -
b2 T -T T T T T a2

L J L11 12 22 21 12 22
J-L J ".

This may be rewritten in the form of Eq. 35 as *-

b~ S a

S is the TE10 mode scattering matrix of an arbitrarily tapered double-

ridged waveguide transition having cross sections with quarter-waveguide

symmetry. The program RIVSWR in Appendix B has been designed to imple-

ment this single-mode version of the multimode analysis technique.

To summarize, two major aspects of numerically obtaining a scat-

tering matrix have been presented. First, in order to solve the TEo0

mode coupled system of differential equations, the coupling coeffici-

ents BI0, K10 and S (101101 had to be known as continuous functions of

z. This was accomplished by computing these quantities at sufficiently

close z intervals and fitting them to a piecewise continuous cubic

spline. The coupling coefficients of each cross section were computed

using the eigenvalue and eigenfunction of the TE1 o mode. The finite-

difference inverse iterative power method was used to solve the matrix-

eigenvalue problem. Gaussian integration was used to obtain S

from the waveguide boundary fields. Second, with the coupling coeffici-

ents in hand, the routine DESOLV was used with mutually orthogonal

initial condition vectors to find linearly independent solution vectors

44
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for the system. These vectors were algebraically transformed into the

TEIo mode transmission and scattering matrices. The elements of the

scattering matrix are used by RIVSWR to obtain profiles of VSWR versus

frequency. As the next section shows, this technique can be used to

model nonlinear tapers in double-ridged waveguide.

."
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IV. EXPERIMENTAL VERIFICATION OF PROGRAM VSWR PREDICTIONS

Comparisons between measured and computed results show that the

taper analysis technique presented herein can be used to accurately

predict transition performance. In order to use terms which better suit

measured data, this section places emphasis on VSWR (computed from S-

parameters). Comparisons are made between computed and measured VSWR

versus frequency profiles for two linearly tapered unridged transi-

tions. The comparisons show that the code is valid for these geome-

tries. A detailed explanation is given regarding how the code was used

to model a cosine impedance transition tapering from rectangular to

~double-ridged waveguide. Measurements made on a cosine impedance taper

show that the code accurately models double-ridged transitions with

nonlinear tapers.

A. Two Linearly Tapered Transitions in Rectangular Waveguide

The work of S. S. Saadll and Z. Wenxin 12 is compared to results

generated by the program in Appendix B; within experimental error, the

code accurately models unridged transition performance. The VSWR pro-

file reported by Saad for height tapered transitions agreed with the

code's predictions. Similarly, the code accurately predicted Wenxin's

VSWR profile for a transition linearly tapered in both height and width.

1. Computed Versus Measured: Normal Mode, Saad and Young

According to the VSWR data computed by Saad and measured by L.

Young, 1 3 the code accurately models dominant mode behavior in linearly

height tapered rectangular waveguides. Figure 10 shows the symmetrical

-46

-- "

- % . . % . .49T .. -.. -. .- . - 46 -. .. . .. . . . ,. .. . .. , . .- .' -

I- -. 4,,<,. , .-.....- :---': .. ," ".. . . .,,,- .,,',-- - ,,-,.-. ,



3.2S
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6.5

Fig. 10. Symmetrical linear height tapered

transition in WR-650 waveguide.

linear taper originally analyzed by Young. He measured the taper's VSWR

by placing it back to back with a quarter wave transformer having a 1.01

maximum VSWR. His measurements are shown in Fig. 11, along with Saad's

numerical solution and the code's predictions.

As these VSWR profiles show, the code is capable of modeling

tapers like the one shown in Fig. 10. Considering possible differences

between computer programs (precision, algorithms, error tolerances,

etc.), the VSWR profiles computed by Saad and the normal mode code are

in good agreement. The code is not a complete model of the taper;

losses, higher order modes, and mechanical imperfections are not taken

into account. Likewise, the measured data are not error free. With

these facts in mind, the agreement between measured and computed VSWR

profiles is quite acceptable. Results similar to these have also been

obtained for doubly tapered rectangular waveguides.
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2. Computed Versus Measured: Normal Mode, Wenxin and Johnson

The VSWR data measured by Johnson 14 and computed by Wenxin show

that the normal mode code is also capable of modeling the dominant mode

performance of unridged transitions whose broad and narrow sides are

linearly tapered. In 1959, Johnson measured the VSWR of the doubly-

tapered transition shown in Fig. 12.

.6

.. 4

Fig. 12. Doubly-tapered rectangular waveguide

analyzed by Johnson and Wenxin.

,

The measured data for this transition show that the code's VSWR

predictions will be low for frequencies above which higher order mode

,. propagation occurs. The measured and computed VSWR profiles are shown

in Fig. 13. Notice the difference between the predictions of Wenxin,

49
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the normal mode code and measured data for frequencies above about 9.8

GHz. The predicted VSWR is low for this portion of the curve. The TE0 1  I
mode becomes transmissible within the taper at 9.8 GHz. Since its

effect on the TEl0 mode is not included in the numerical model, the

theoretical prediction of VSWR should be lower than the measured one.

With the exception of Schelkunoff, 15 the computed VSWR profiles were

very accurate below 9.8 GHz. Results similar to those presented for

unridged waveguide transitions have also been obtained for ridged ones.

B. A Cosine Impedance Transition in Double-Ridged Waveguide

This work culminates in the ensuing paragraphs where the agreement

between theory and experiment shows that the normal mode technique is

capable of successfully predicting the VSWR profile" of nonlinear wave-

guide tapers. A detailed example is given of how the normal mode code

RIVSWR (Appendix B) was used to transform the physical dimensions of a

cosine impedance transition (WR-90 to WRD-750) into a VSWR versus fre-

quency profile for the dominant mode. Network analysis, time domain

reflectometry and inverse Fourier transforms are used to obtain measured

data that compare well with the code's prediction.

1. Transforming Waveguide Dimensions into a VSWR Profile
...

In order to run the code, the user must create a data file which
R4

* provides an accurate discretized description of the taper's boundary

(RSIZ.DAT). The following example shows 1) how this file was created

for the cosine taper and 2) a sample run with the resulting VSWR pro-

file.
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A cosine impedance function was chosen for this example since it

can be used to make short low VSWR transitions. The function is given

by

(z) " (ZIZ2)1/2 e 1-I 'r

Z (Z) n Z exp - 1 [z 2/Z] cos (7z/L) (69)

No

" and Z are the respective characteristic impedances of the WRD-750
1 2

and WR-90 ends of the taper with length L = 1 inch. A plot of Eq. 69 is

shown in Fig. 14. A definition of impedance in terms of waveguide

dimensions was used to impose this profile upon the transition.

Hoefer's 16 voltage to current based definition of ridged waveguide

impedance was used to find an axial profile for ridge height. Figure 15
P",

shows the notation Hoefer used to define the impedance

Z~o = Zo=1 - (X/Xr)2 (70)

% .

where

2
= 120i2 (b/X) (71)''Z -( 71) "-

0 b Ws+ B IT b aits
-sin + tan cos

crt0 cr cr

and

4))
b b 1+ + 0.2 a b in csc

,C- Ll + ((a s l) a s_2.., ~cr , .

+ (2.45+ 0.2 s) s ] (72)
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a

Fig. 15. Dimensions of a double-ridged
waveguide as defined by Poefer.

b/X is the normalized cutoff frequency. The normalized susceptance is
cr

* approximately

d
B /Y 0 =(2b/Xcr in csc (73)

In order to simultaneously solve Eqs. 69 and 70 for d at a number of

axial positions, s was kept constant (0.73") and a and b were linearly

Stapered f rom one end to the other. With a, b, s and Z0 specified at

* 0.01 inch intervals in axial position, a root finding routine was used

to solve Eq. 70 for d at 101 points along the taper. A profile of the

*ridge height was obtained from d and is shown in Fig. 16. In addition

to specifying the geometry of the transition, RSIZ.DAT must contain

information about the slopes of the waveguide boundaries.

Unlike the other waveguide boundaries, a least squares fit was

applied to the ridge height profile in order to obtain a smooth slope.
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I,

The slope of the taper in b from the input bl to the output b2 was

obtained as

b2 bi
tan e2 = 2l2L

0.321 - 0.4
2(1)

- 0.0395 (74)

Similarly, the slope of the taper in a (tan 01) was calculated to be

- -0.1045. Since the ridge width was held constant, the slope in

s (tan 03) is zero.

An eighth order fit on the computed boundary data for ridge height

was used to obtain its slope as a function of axial position. The

numerical inaccuracies of the root finding computations were smoothed

away by the least squares fit. The fit gives the ridge position h' with

respect to the waveguide axis as shown in Fig. 17. The fit function is

given by

2 6z3  897162z4
h'(z) - 0.138658z + 0.408664z 1.0256 + 0.897162z

6 7-
- 0.225208z 5 + 0.022618z - 0.228794z + 0.144703z8  (75)

The derivative of this curve describes bow the ridge moves away from the

z' line. Its negataive is the slope of the ridge boundary d with

respect to the z-axis,
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Fig. 17. Ridge height with respect to a line
parallel with the waveguide axis.

'h 2,~ -3-

-dh = tan e4 -(0.138658 + 0.817328x -3.07698x + 3.58965x 3

4 5 6 71.12604x + 0.135708x 1.60156x + 1.15762x (76)

In summary, nine data points are needed to describe the waveguide

boundary at an axial position; a, b, d, s, z, tan 01, tan 02, tan 63 and

tan 64. The data file developed for the WR-90 to WRD- 1 5O transition is

shown in Appendix C. The first line contains the number of axial posi-

tions for which data are given. Every two lines thereafter contain the

dimensions and tangent data, respectively. This file was used by RIVSWR

(Appendix B) to obtain the VSWR profile.
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The following sample run of RIVSWR shows how to input data and

where to find computed results. The code assumes that RSIZ.DAT contains

the appropriate data. The user types in the underlined portions.

$ RUN RIVSWR
ENTER REFLECTION COEFFICIENT OF SOURCE
(0. ,o.)
ENTER REFLECTION COEFFICIENT OF LOAD
(0.,0.)
ENTER LOW AND HIGH EDGES OF SWEEP BAND (GHz)
8.4,18.0
ENTER # OF FREQUENCY STEPS
100
EIGENVALUES IN EIGDAT.DAT? TYPE "1" IF SO t
2
HOW GOOD SHOULD THE FIT BE? (INCHES)
.001
ERROR OF FIT = 6.0239E-4 (INCHES) H = 2.1708E-3 (INCHES)
ACCELERATION FACTOR W = 1.9385
CUTOFF FREQUENCY - 6.536667 GHz a,-

In addition to the users guide in Appendix B, a brief explanation

will be made regarding the above run. If the user wishes to model

transition performance in the presence of load and source mismatches,

complex reflection coefficients other than those shown may be entered.

For the above example, the code will attempt to fit its mesh (which

represents a quarter of the waveguide) to within 0.001 inches of the

waveguide boundary. This represents a maximum total fit error of 0.002

inches. The error of fit is limited only by the size of the matrix HZ

in RIVSWR. The printout sequence from ERROR OF FIT to CUTOFF FREQUENCY

continues until all the cross sections of RSIZ.DAT have been analyzed.

The code then writes the frequency, S-parameter and VSWR data to the

files SPARAM.DAT and PVSWR.DAT. Figure 18 shows the VSWR versus fre-

quency profile for the WR-90 to WRD-750 taper. As will be seen in the

following pages, this computed profile agrees well with the measured

data.
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2. Cosine Taper VSWR Measurements

The capabilities of the Hewlett Packard HP8510A network analyzer

were used to obtain the VSWR profile of the cosine impedance- taper. In

addition to the HP8510A's waveguide calibration kit, its time domain

reflectometry and inverse Fourier transform functions helped make accu-

rate VSWR measurements of the cosine impedance taper. Figure 19 shows

two views of the electroformed taper.

a. The Experimental Setup

A WRD-750 sliding load and offset shorts were used to calibrate

the system out to the test plane. The test plane was the open end of a

WRD-750 waveguide. The other end of the waveguide was attached to the

system by a coax to waveguide transition. The phase and m., nitude of

SI1 was measured by the system for two waveguide shorts (0.256 and 0.768

inch offsets) from 8.4 to 12.4 GHz. Sil for the sliding load was mea-

sured across the same band for several different load locations. This

procedure was repeated over the 12.4 to 18 GHz band with 0.118 and 0.354

inch offset shorts. Figure 20 shows a block diagram of the experimental

set-up. The load was separated from the cosine taper by 18 inches so

that reflections from each would be well separated in time.

-- °
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b. VSJR Measurement and Time Domain Reflectometry

Time domain reflectometry and inverse Fourier transforms were

successfully used to filter out the load's effect on VSWR. The time

domain reflectometry data taken over the low (8.4-12.4 GHz) band is

shown in Fig. 21. The highest peak (first in time) corresponds to the

left edge of the taper (WRD-750) and the second peak corresponds to the

right edge (WR-90). As expected, the load response (third peak) is very

distinct from the other two. A similar response was obtained for the

high band (12.4-18 GHz). The VSWR of the taper with an ideal load can

V, -. now be approximated by neglecting the load response.

By taking the inverse Fourier transform of a gated portion of the

time response curve, the load's effect on measured taper VSWR was elimi-

nated. This is clearly shown in Fig. 22 where the rippled and smooth

curves correspond to measured and modified VSWR data, respectively. The

* -.smooth curve (8.4-12.4 GHz) corresponds to the gated portion (between

markers) of the time response curve in Fig. 21. The smooth portion of

the high band curve was obtained in the same manner. The smooth curve

... is used to represent measured data in the comparison with computed

predictions.

3. Computed Versus Measured VSWR

The good agreement between measured and computed VSWR provides the

_ final piece of evidence in support of RIVSWR and the normal mode tech-

nique. Figure 23 shows these profiles for the cosine impedance taper.
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Three reasons for the difference between these profiles are 1) j

physical modeling error, 2) higher order mode propagation and 3) mea-

surement error. In the sample run of RIVSWR, the code was forced to fit

each waveguide cross section to within -0.002 inches. On the average,

the dimensions of the taper deviated from design by -0.001 inches.

These physical modeling errors accompanied by the numerical errors

previously mentioned are one source of the discrepancy between theory

and experiment.

Higher order modes are partially responsible for high values of

measured VSWR. The TE0 2 and TE01 modes become transmissible within the

transition below 13.1 and 14.7 GHz, respectively. Since RIVSWR models

""- dominate mode (TE1 o) behavior, its VSWR predictions do not account for

the effects of these modes. Below about 11 GHz, these effects are not

present and measurement errors are more readily identified.

Since the HP8510A's resolution is very good, it is difficult to

ascribe differences between theory and experiment to the measurement

process. The HP8510A used calibration data and internal error correct-

ing routines to obtain a resolution of about 43 dB. This represents a

possible error in VSWR of about 0.015. In light of this fact, the

maximum deviation between theory and experiment (from 8.4 to 12.4 GHz)

is about 0.05 in VSWR. From a practical viewpoint, this errot and the

0.09 VSUWR error at 18 GHz is quite acceptable.

To summarize, experimental and computed VSWR profiles have been

r presented for three waveguide tapers. They represent the ridged and

unridged, linear and nonlinear types of tapers. In all three cases,

RIVSWR accurately predicted the measured VSWR. Aside from numerical,
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tolerance and measurement error, the largest errors were observed for

.5 tapers which propagated higher order modes. The twofold purpose of this I
section has been fulfilled. First, the normal mode technique- presented

in previous sections has been shown to work. Second, the example of

creating RSIZ.DAT and running the code for a nontrivially tapered

double-ridged waveguide makes it possible for other workers to use

RIVSWR for similar applications.

7j
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V. CONCLUSION Iw. -

The theoretical and numerical aspects of developing a waveguide

transition design tool have been presented. Normal mode and finite

difference concepts provided a foundation for the code RIVSWR. It

satisfactorily predicts the dominant mode VSWR of tapers in rectangular

and double-ridged waveguide.

Calculated and measured VSWRs of three tapers were compared. The

first two were linear tapers in rectangular waveguide. The third was a

cosine impedance taper in double-ridged waveguide. In each case, the

code predicted VSWR profiles that were typically within 5 percent of

measured ones. Within the operating band of the dominant mode, the

Serror was mainly attributed to tolerance and measurement errors. Above

this band, higher order modes propagate. Since the code does not

account for the affect these modes have on the dominant mode, its VSVR

predictions were low in this region.

As the previous paragraph suggests, the code could be improved by

modeling higher order modes. Additionally, modes passing through cutoff

within the transition could be included. These improvements would make

it possible to accurately predict the VSWR of double-ridged waveguides

having wide flare angles.
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APPENDIX A

COUPLING COEFFICIENTS

+C

The coupling coefficients for the V-I and A+ A- formulations are

listed as T and S,5 respectively.

T =22tan e M -"-P)~ ds; h h (A.1)
(i)(p) h 2h -a) n an M i (p)

T =0 (A.2)

2 a
h

T tan 0 dp ; hri h (A.3)
[il] h - h C(Z) [an

[i (()C)z

a~ 2
*~ (i() ()i S tan e ds (A.5)

2C(Z) a

T =5 L ta e dsl (A.6)[fji [J~] 2 Cas a
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". h" 8 2)h 2

*, S± (i)h(p) ± (p) (i) r (i) ____p)

S = p) tan 6- ds; h * h(i)(p) )1/2 2 22  an an () (p)2(6(1 B(P (h M) h (p) C(z)

(A.7)

+ = k )/2 tan e a --]- ds (A.8)S(i)[P] 2(B MiB [p] )12 C(z) an as

2 a 2 ][P]ds

h [] tan 8 '[ 2[ [p]dh ± 8tan e 2 ds

[ C(z) an' C(z) dn-"-.." [i][p] 2(8[i8[p) 1  2 ~ ]

"B2 2 _ h2

*(A.9)

S =S = 0 (A.10)
:-""i)(i) [ Mi][

where Eq. 15, Eq. 16 and the following identities have been used,
A'o

=) (n tan e
az.' an

2
a a'P[1] a [ii

n-n-2 tan 8 on C(z) (A.11)

.0° %
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APPENDIX B

DOMINANT MODE DOUBLE-RIDGED WAVEGUIDE PROGRAM DESCRIPTION,
FLOW CHART AND FORTRAN LISTING

I. PURPOSE

This program computes the scattering matrix and VSWR of a double

ridged waveguide taper at equally spaced intervals in the designated

frequency band.

I SCOPE

The program implements a dominant mode version of the A+ - A-

formulation and will predict low VSWR profiles for tapers that excite
..

*strong" higher order propagating or evanescent modes.

III. METHOD

The finite difference method is used to compute cross-section

eigenvalues and eigenvectors. The Gauss integration formula is used to

evaluate Solymar's coupling coefficient S ] [ 0  hampine's sub-

routine DESOLV integrates the normal mode equations using the modified

divided difference form of the Adams Pece formulas. Finally, the steps

outlined in Sections II and III are implemented to obtain the scattering

matrix and VSWR.

IV. ORGANIZATION

This Appendix contains a description, flow chart and Fortran

listings of the RIVSR and DESOLV. RIVSWR is composed of three major

parts. The first part asst'rmes the user has (1) divided the tranqition

k -72-
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into a representative set of cross sections and (2) sequentially

provided the standard dimensions of each cross section in a data file

(RSIZ.DAT). This data is used to compute coupling coefficient

information at each cross section and is stored in a data file

(EIGDAT.DAT). The second part of RIVSWR uses the coefficient data and

DESOLV to compute the scattering matrix and VSWR at the frequencies

specified. The input VSWR (VSWRl)-frequency set is written to PVSWR.DAT

at each frequency. The S-parameter and frequency data are writtcn tc

SPARAM.DAT. The third part of the program contains subroutines for

integration, differentiation, cubic spline fitting and mesh fitting.

V. USAGE W

The important aspects of using this code fall under the following

categories: input variables, output variables, accuracy specifiers and

error detectors.

Input Variables

These are read in from both the te,.4inal and the RSIZ.DAT or

EIGDAT.DAT data files. The variables read from the terminal
4.p

are defined below in the order one would enter them.

73/
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1 . Read in from terminal

a. GAMAS - a complex variable (real, imaginary) that

expresses the reflection coefficient of the

- source. Enter (0.,0.) if source has no reflec-

tion coefficient.

b. GAMAL-- a complex variable that expresses the reflection

coefficient of the load.

c. FM!N &

FMAX lower and upper edges of the frequency band over

which S-parameter and VSWR information are

desired. For example, if the band is 2-10 GHz,

then FMIN = 2 and FMAX- 10.

d. NFS -- number of frequency steps the band is to be

divided into. Note, if NFS - 8 for the 2-10 GHz

band, there will be 9 frequency data points.

e. IYES - is I if EIGDAT.DAT contains information about the

current geometry, otherwise IYES - 2.

f. RFIT -- required fit (inches). Applies to 1/4 of the

A waveguide; the fit error for the entire waveguide

will be less than 2*RFIT.

2. Read in from RSIZ.DAT

Appendix C shows a data file for the cosine taper. The

first row specifies the number of cross sections. Every

two rows thereafter contain information about the dimen-

sions and tan 6 of a particular cross section.
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Row 2

AA - interior width of standard ridged waveguide

.a (inches)

BB -- interior height of standard ridged waveguide

(inches)

* DD -- distance between ridges (inches)

S SS -- ridge width (inches)

ZLOC(KKK) -- distance the KKKth cross section is from the

beginning of the transition (inches)

S. Row 3
Aq'

TANTi(KKK)- is the tangent of the taper angle on the ith

side of the quarter waveguide at the KKKth cross

section. The fifth page of RIVSWR and Fig. 7

clearly show sides 1 through 4. TANTi is nega-

tive (positive) at points where the waveguide

walls slope toward (away from) the z-axis.

3. Read in from EIGDAT.DAT

This file saves the eigenvalue and coupling coefficient

data for the taper. It can be used to rerun the code for P.

a new set of frequency limits. The file is automatically
'p 

%

read when a "1" is typed in response to the question,

"EIGENVALUES FOR GUIDE IN EIGTAT.DAT?" The entries of a

typical row are defined from left to right for the KKKth

cross section as 
.

755

- 75 -

--- .,;+. ..-- +., -.-..t++s ..+a Pi+,,,,h 'b 
- ,

-. c, "'- .
"

..... +..... .......... ... .".-. ...



a. COUPL(KKK) - Solymar's coupling coefficient (S[10][10])

b. USHS(KKK) -- the eigenvalue squared multiplied by the

square of the mesh size

c. HH (KKK) -- mesh size (cm) as depicted in Fig. 5

d. FCUTOFF(KKK) -- cutoff frequency normalized by I.E + 9

* e. ZLOC(KKK) -- as defined for RSIZ.DAT

Output Variables

The input VSWR and scattering matrix are output by the

program. The following is a list of key variables as they are

defined in the program.

1. HZ -- a matrix containing * of the current cross

section. The actual field points are

those that lie on and interior to the

solid and dashed lines of Fig. 5.

2. FCUTOFF(KKK) - as defined for EIGDAT.DAT

3. SI I,S12,

$21,$22 -- elements of the transition scattering

matrix at a specific frequency

4. VSWRI -- transition input VSWR including effects of

load mismatch

5. VSWR2 -- transition output port VSWR including

effects of source mismatch -'

6. RATIO -- cutoff frequency ratio (ridged/unridged)

at the current cross section for the

dominant TE mode
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Accuracy Specifiers

There are six variables that can be used to determine the

accuracy of the matrix-eigenvalue problem and differential

equation solutions.

1. MAXITER -- number of iterations the user will permit

the code to execute in an attempt to obtain

convergence for the matrix-eigenvalue

problem.

2. RESMAX -- representative of the maximum allowed error

in the longitudinal magnetic field. 4

3. DELTAU -- an indicator of the maximum allowed error in

the cross-section eigenvalue.

4. RTOL,ATOL -- equivalent to RELERR and ABSERR in the

differential equation solving routine

DESOLV. They are representative of this

routine's accuracy.

5. KNT -- this variable is found in subroutine

BLOCKS. The longest dimension (a or b) is

divided into KNT equal size mesh blocks of

length and width h. This variable is found

in subroutine BLOCKS. KNT is incremented ."-

until the mesh fits the waveguide to within

RFIT. In the current code, execution is

halted at KNT = 1000 and the user is asked

to relax the tolerance on the required fit

RFIT.

U." - 77 -
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Error Detection

RIVSWR responds to the following errors:

-' 1. Required Fit Unobtainable -- The variable IERR is returned

"' from subroutine BLOCKS. IERR = I if the matrix HZ is too

-i small to obtain a block size capable of satisfying the

required fit. IERR = 0 for a successful fit. If IERR =

1, the user is notified of the problem and is prompted

from the terminal to input a smaller value of RFIT.

2. Frequency Below Cutoff -- As previously mentioned,

Solymar's normal mode analysis is invalid at and below

mode cutoff. The current propagation frequency is com-

pared to the cutoff frequency of each cross section. If

-i the propagating wave condition is violated, the user is

notified and program execution stops at 1000.

A flow chart for RIVSWR and documented listings of RIVSWR and DESOLV are

given in the following pages.

.S7
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C PROGRAM ------------------------------------------------ RIVSWR
C AUTHOR ------------------------------------------ BRETT BRAATZ
C PURPOSE: TO COMPUTE THE SCATTERING MATRIX AND VSWR FREQUENCY
C PROFILES OF AN ARBITRARILY TAPERED DOUBLE RIDGED-WAVEGUIDE.
C METHOD : THE HELMHOLTZ WAVE EQUATION IS SOLVED FOR THE DOMINANT
C MODE MAGNETIC FIELDS Hz AND EIGENVALUES AT DISCRETE AXIAL
C LOCATIONS ALONG THE TAPER. FINITE DIFFERENCE TECHNIQUES
C WERE USED TO TRANSFORM THE HELMHOLTZ EQUATION INTO A
C A MATRIX-EIGENVALUE PROBLEM. THE INVERSE ITERATIVE POWER
C METHOD (SUCCESSIVE OVER RELAXATION) IS USED TO SOLVE THIS
C PROBLEM. THE RESULTING TEIO MODE BOUNDARY FIELDS AND THEIR
C DERIVATIVES ARE APPROXIMATED AS CONTINIOUS FUNCTIONS USING
C PIECEWISE CONTINIOUS CUBIC SPLINES. THE SPLINES ARE
C USED TO COMPUTE SOLYMAR'S COUPLING COEFFICIENT S[103[101.
C THE SELF AND IMPEDANCE COUPLING TERMS ARE CALCULATED
C USING THE EISENVALUE OF THE PARTICULAR CROSS SECTION.
C ALL OF THE COUPLING COEFFICIENTS ARE APPROXIMATED AS
C CONTINIOUS FUNCTIONS OF AXIAL POSITION USING CUBIC
C SPLINES. THE COUPLED SET OF DIFFERENTIAL EQUATIONS IS
C SOLVED FOR TWO ORTHOGONAL SETS OF MODE AMPLITUDE INITIAL
C CONDITIONS. THE SOLUTIONS AT Z = L ARE THEN ALGEBRAICLY
C MANIPULATED INTO THE FORM OF THE RIDGED TRANSITIONS
C SCATTERING MATRIX. THE SCATTERING MATRIX AND INPUT

.- C VSWR ARE WRITTEN TO SPARAM.DAT AND PVSWR.DAT, RESPECTIVELY.
C
C
C SOLUTION OF HELMHOLTZ EQUATION WITH NORMAL-GRADIENT BOUNDARIES
C DOMINANT TE MODE OF RIDGE WAVEGUIDE
C

DIMENSION HZ(1000,1000)
REAL YI(1000),Y2(I000),Y3(1000),Y4(1000),XI(1000),X2(1000),

$X3(1000)
X4(1000),B(000),C(i000),P000),TANT4),FREQUEN(200,COUPL(1n,

$USHS(10I),HH(IOI),BETA(I01),ZIMP(IOI),FCUTOF(IOI),ZLOC(101),
SYYY(4),VSWRI(200),VSWR2(200),TANTI(IOI),TANT2(101),TANT3(101),
$TANT4(101)
REAL EVAL,DERIV,U
COMPLEX All,A12,A22,A21 ,S11,S12,S21,22,ZETA,GAMMA,GAMMA2,

$GAMAL,GAMAS
INTEGER I,N
INTEGER*4 MAXITR
COMMON /FVARS/ ZLOC,COUPL,ZIMP,BETA
COMMON NCROSS
EXTERNAL F
MAXITR = 30000 'MAY # ITERATIONS UNTIL PROGRAM QUITS
RESMAX z .001 !MAXIMUM ACCEPTABLE RESIDUE
DELTAU = .0001 !MAX. ACCEPT RELATIVE ERROR IN EIGENVALUE
SOL = 2.997925E+10 !SPEED OF LIGHT CM/SEC
PI 3.141593
PERM = 4.*PI*I.OE-9 'MAGNETIC PERMIABILITY OF FREE-SPACE(CM)
RELPER = 1.0 'RELATIVE PERMITTIVITY OF FREE-SPACE
OPEN(UNIT=16 ,FILE='SPARAM.DAT',STATUS='UNKNOWN')~OPEN(UNIT=I7,FILE='RSIZ.DAT',STATUS='UNKNDWN*)
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OPEN (UNIT=19,F ILE= 'P VS WR. DAT' 5TATUS= 'UNKNO WN')
OPEN (UNIT:20,F ILE ' EIGDAT. DAT',STATUS ' UNKNO WN')

C DATA INPUT

WRITE(6,*) 'ENTER REFLECTION COEFFICIENT OF SOURCE'
READ(6,*) GAMAS

WRITE(6,U)'ENTER REFLECTION COEFFICIENT OF LOAD'

WRITE(6,4)' ENTER LOW AND HIGH EDGES OF SWEEP BAND (6Hz)*
READ(b,*) FMIN,FMAX
FREgUE = FIIIN'1.OE"'9
WRITE(6,*)' ENTER # OF FREQUENCY STEPS'
READ (6,*) NFS

-~ DELF = ((FMAX-FMIN)/FLOAT(NFS))*1.OE+9 !STEP SIZE IN FREQUENCY I

NFS = NFS + 1 'ONE MORE FRED. POINT THAN # FREQ. STEPS
WRITE(6,*) 'EISENVALUES FOR TAPER IN EIGDAT.DAT? TYPE -I- IF SO'
READ(6,*) IVES
IF(IYES.EQ.1)GO TO 29
WRITE (6, 1)

IFORMAT(IX, 'HOW GOOD SHOULD THE FIT BE?(INCHES) ')
READ C6,*)RFIT
READCI7,*)NCROSS .
DO 28 KKK - 1,NCROSS

KMM = KKK
* S. READ( 17,*UAA,BB,DD,SS,2LOC (KKK)

READ(17,*)TANTI(KKK),TANT2(KKK),TANT3(KKK),TANT4(KKK)
ZLOC(KKK) = ZLOC(KKK)*2.54

2 CALL BLOCKS(AA,BB,DD,SS,IBAR,JBAR, IMAX,JMAX,WFIT,RFIT,H,IERR)
IF(IERR.EQ. 1)THEN
WRITE(6,*) 'ACCURACY ON FIT REQUIRES A MATRIX LARGER THAN THIS

s PROGRAM CAN HANDLE: TRY A LESS ACCURATE FIT OR CHANGE THE
*$ HZ-MATRIX AND ALL VECTORS OF THE SAME DIMENSION (AT THE

s BEGINNING OF THE MAIN PROGRAM) TO A LARGER SIZE.'
WRITE(6, 1)
READ(6,*)RFIT
GO TO 2

ELSE
END IF
WRITEib,*)'ERROR OF FIT= ',WFIT,' (INCHES) H z ',H,' (INCHES)'
H = H*2.54 CONVERT MESH SIZE TO CM
JMAX = JMAX+3 CONVERT # BLOCKS TO # NODES ON B/2
IMAX c IMAX+2 .CONVERT # BLOCKS TO # NODES ON A/2
P - FLOAT(IMAX) # BLOCKS IN GUIDE WIDTH
0 = FLOAT(JMAX) # BLOCKS IN GUIDE HEIGHT

C
C ALGORITHM TO DETERMINE OPTIMUM ACCELERATION FACTOR
C

CINT a COS(PI/P) + COSPl/g)
ALPHA=4. /(2. +SQRT (4. -CINT**2))
WRITE(6,4) 'ACCELERATION FACTOR W ',ALPHA
B1 = FLOA1'(JMAX-3)
811 z 8142.
Al =FLOAT((IMAX -2)*2)
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BOA = 11/Al
UHS9 c(PI/Al)**2 !RECTANGULAR WAVEGUIDE TE(10)

C
*C NOTE: FOR THE EACH CROSS SECTION THE APPROXIMATION

C USED AS A STARTING VALUE FOR UHSQ IS THAT OF A RETANGULAR
C WAVE6UIDE HAI-ING THE SAME SIZE.
C
C ENTER INITIAL GUESS FOR FIELD VALUES- NOTE: THE INITIAL GUESS
C FOR THE FIELD VALUES IS ZERO FOR EACH CROSS SECTION.
C

DO 3 I=1,IMAX
DO 3 J=1,JMAX

HZ(1,3) =0.0
3 CONTINUE

DO 4 J=1,JMAX-2
HZ(CIMAX ,J) =0.
DO 4 I=I,IMAX-1

HZ (I,3) =. S
4 CONTINUE

A2 = FLOAT(2*JBAR)
SOA = A2/AI
B2 = FLOAT(JMAX - IBAR -3)

DINT = 2*2.
* DOB =DINT/Bil

C
C FIVE ITERATIVE CYCLES FOLLOW
C

KONVRG=0
ITERAr=0

5 ALFA=ALPHA/(4.-UHSO)
DO 16 K=1,10

C
C ITERATIVE PASS THROUGH FIELD
C

BIGEST=:0
IMA= IP AX-1
3=1

IS = IMAX - JBAR
JT = JMAX-IBAR-1
DO 7 I=2,IMA

RESDL=HZ(I-1,J)+HZ(I+1,J)+HZ(I,J-1)+HZ(I,J+1)+(UHSQ-4.)
*HZ(I,J)

IF (ABS (RESDL) . T. DIGEST) BIGEST=ABS(CRESDL)

NeHZ (1,3) HZ (1,3)+ALFA*RESDL
7 CONTINUE

IF(J-JT)6,8,9
8 IMA=IS

HZ (IS+1,JT+1)=HZ (IS-i ,JT+1)
9 IF(J.LT.JMAX-I)GOTO 6
C

PC SET HZ VALUES AT EXTERNAL FIELD POINTS
C

DO 10 I=2,IMAX-1

R P3 -
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HZ (1,1)=HZ (113)
HZ (I,JMAX) mHZ (I,JMAX-2)

10 CONTINUE
DO 11 IiIS+l,IMAX-1

HZ (I,JT41)=HZ(I,JT-I)
*111 CONTINUE

DO 12 J=1,JMAX

*12 CONTINUE
DO 13 J=JT+2,JMAX

HZ(IS+1,J)=HZ(IS-1,J)
13 CONTINUE

C
C FIND AVERAGE HZ NEAR SYMMETRY EDGE
C

TOTAL=.5*(HZ(IMAX-1,2+HZ(IMAX-1,Jrn -

DO 14 J=3,JT-1
TOTAL=TOTAL+HZ (IMAX-1 ,J)

14 CONTINUE 4
AVG=.5*B2/TOTAL

C
C SCALE FIELD VALUES
C

DO 15 II1 INMAX
DO 15 J1I,JMAX

HZ CI,J)=AVS*HZ (I ,J)
15 CONTINUE

ITERAT=ITERAT+1
16 CONTINUE

C
C END OF SINGLE ITERATION
C
C CALCULATION OF RAYLEIGH COEFFICIENT
C

RCN=0.
RCD=0.
DO 17 J=2,JMAX-1

DO 17 I=2,IMAX-1
FCTR=AREAUI,JJT,ISIMAXJMAX)
RCN=RCN.FCTR*HZ(I,J)(HZ(I-I,J)4HZ(I+1,J,+HZ(I,J-fl+

s HZ (I ,J+ ) -4. *HZ (I,J)
RCD=RCD4FCTR*(HZ(I ,J)**2)

17 CONTINUE
* RCN=RCN+.5*HZ(IS,JT.1)*(HZ(IS-1,JT+fl-HU(IS.11 JT-1))

RAYLGH=-RCN/RCD
C
C CHECK FOR CONVERGENCE
C

IF(ABS((RAYL6H-UHSQ)/RAYLGH).LT.DELTAU)KONVRG=I
IF(ITERAT.GT.MAXITR) GOTO 18
UHSQ=RAYL6H
IF(KONVRG.EQO)GOTO 5
IF (BIGEST. GT. RESMAX ) 010 5

18 FCUTOF(KKK)=(SQRT(UHSQ).SDL)/ (H#2.*PI*L.OE+9) 'CUTOFF FREQ/1.E9
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WRITE(6,*)" CUTOFF FREQUENCY = ',FCUTOF(KKK), GHz'

C
C SCALE THE FIELD VALUES TO SOLYMARS NORMALIZATION

C
SDO 19 II = I1,IMAX

DO 19 JJ = 1,JMAX
HZ(II,JJ) = HZ(II,JJ)/(SQRT(4.*RCD*UHSQ))

19 CONTINUE
C
C BELOW IS SHOWN A QUARTER SECTION OF A RIDGED WAVEGUIDE. THE
C LINES OF SYMMETRY ARE INDICATED BY DASHES AND THE GUIDE BOUNDARY

C IS MADE UP OF STARS. THE SECTION BEING LOOKED AT IS THE LOWER
C LEFT ONE.

C
C FILL UP THE X AND Y VECTORS FOR SIDES I-4 SHOWN BELOW. X GIVES
C THE BOUNDARY LOCATION AND Y IS THE FIELD AMPLITUDE AT X. THESE

C VECTORS ARE FIT TO A CUBIC SPLINE AND ARE THEN USED IN AN INTE-

C BRATION ROUTINE THAT COMPUTES THE BACKWARD COUPLING COEFFIEIENTS.

C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C
C 0.0 ----------------------------------------------------------- A/2

C *

C * #INTERVALS=IMAX SYMMETRY PLANES >>>
C *

""C *

C *

C *

C D 0/2
C * *
C * <<< SIDE 1(#INT=JMAX) * SIDE 4(#INT=JBAR)

C 

*

C SIDE 3 >>> *<<(# INTERVALS=IBAR

C * *
C * *

C
-I C B/2 ***************** A/2 - S/2

C SIDE 2
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C
C FILL X & Y FOR SIDE I

C
DO 20 JP = 2,JMAX-1
JOO=JP-I

X1(JOO) = (FLOAT(JOO-I))*H
YI(JO0) = HZ(2,JP)

20 CONTINUE
C
C FILL X & Y FOR SIDE 2

C
DO 21 IPP = 2,IS

100 = IPP-1
X2(IOO) = (FLOAT(IOO-1))*H

Y2(IO0) = HZ(IPP,JMAX-1)
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21 CONTINUE
C
C FILL X L Y FOR SIDE 3
C

KNT = 1
DO 22 JPP = JMAX-1,JT,-l

X3(KNT) = (FLOAT(KNT-1))*H
Y3(KNT) =HZ(IS,JPP)
KNT =KNT+1

2 2 CONTINUE
C
C FILL X L Y FOR SIDE 4
C

MCNT z 1
DO 23 IL =IS,IP AX

X4(MCNT) =(FLOAT(MCNT-1))*H
Y4(MCNT) = HZ(IL,JT)
MCNT = MCNT+1

23 CONTINUE
C
C INTEGRATE THE SQUARED-DERIVITIVES OF THE FIELD VALUES

VC ON EACH SIDE OF THE GUIDE SHOWN ABOVE
C
C COMPUTE CONTRIBUTION TO S[lO3[10)- FROM SIDE 1
C

L z JMAX-2
CALL SPLINE(L,XI ,Y1 ,B,C,D)
GRATI= 0.
DO 24 IR = 1,L-1

BEG c Xl(IR)
END = XI (IR4L)
CALL GAUSS(L,BEG,END,X1 ,Y1 ,CDA0
GRATI = GRATI + ANS

24 CONTINUE
GRALI =6RATI*TANT1(V.k)

C
C COM~PUTE CONTR 1WUTION TO S11O)(10)- FROM SIDE 2

L =IMAX -JBAR-1

CALL SPLINE(L, X2,Y2,B,C,D)
GRAT2 z0.
DO 25 IR = 1,L-1

BEG = X2(IR)
END =X2(IR41)
CALL GAUSS (L,BECG,END, X2,Y2.B,C,D1 ANS)
6RAT2 =GRAT2 + ANS

25 CONTINUE
GRAL2 = RAT2*TANT2(XI'Y,

C
C COMPUTE CONTRIBUT,'bN 7O0 VM% ~? :

L =IBAR + 1
CALL SPLlINE (L ,X: Y T , ,D,

v GRATZ 0



DO 26 IR a 1,IBAR
DEG - X3(IR)
END a X3(IR+1)
CALL GAUSS(L,DEG1 END,X3,Y3,B,C,DANS)
6RAT3 aGRAT3 + ANS

26 CONTINUE
SRAL3 a RAT3*TANT3(KKK)

C
C COMPUTE CONTRIBUTION TO S[iO3[103- FROM SIDE 4
C

L zJDAR + I
CALL SPLINE(L,X4,Y4,B,CtD)
GRAT4 -0.
DO 27 JR I ,JBAR

BEG z X4(IR)
END = X4(1R+I)
CALL 6AUSS(LBEG,END,X4,Y4,B,C,D1 ANS)
GRAT4 = GRAT4 + ANS

27 CONTINUE
GRAL4 a GRAT4*TANT4(KKK)

C
C SUM UP ALL FOUR SIDES AND MULTIPLY BY 4 TO ACCOUNT FOR ALL 4
C QUADRANTS. THEN MULT BY -.5 TO GET SOLYMARS COUPLING COEFF.
C

TINT = 4.*(GRAL1+6RAL2+6RAL3+GRAL4)
COUPL(KKK) a -. 5*TINT ! SOLYMARS COEFF
USHS(KKK) = UHS9
HH(KKK) =H

C
C SEND CROSS SECTION COULPING COEFFICIENT DATA TO EISDAT.DAT.
C IF THE USER SPECIFIES THAT EIGENVALUE DATA ALREADY EXIST THERE,
C THE PROGRAM SKIPS ALL OF THE ABOVE CODE AND BEGINS WORK AT LABEL
C 29 BELOW.
C

WRITE(20,*)COUPL(KKK) ,USHS(KK) ,HH(KKK),FCUTOF(KKK),ZLOCCKKK)
RATIO = PI/IAI;SQRT(UHSQfl !CUTOFF FRED-RATIO WITH/WITHOUT

28 CONTINUE
60 TO 31

*29 WRITEC&,*)'ENTER THE NUMBER OF CROSS SECTIONS IN EIGDAT.DAT'
READ(6,4) NCROSS
DO 30 IMP = 1,NCROSS

READ C20,U)COUPL(IMP),USHS(IMP),HH(IMP),FCUTOF(IMP),ZLOC(IMP)

30 CONTINUE

CB C
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C

C C
C THIS IS A SEPERATE BLOCK OF THE PROGRAM. IN THIS SECTION, THE C
C TAPER SCATTERING MATRIX AND VSWR ARE COMPUTED FROM FMIN TO C
C FMAX AT INTERVALS OF DELF. THE ROUTINE DESOLV IS USED TO OBTAIN C
C THE AMPLITUDES OF A+ AND A- AT Z=L FOR TWO ORTHOGONAL INITIAL C
C CONDITION VECTORS DEFINED AT Z=O. THESE SOLUTIONS ARE THEN C
C TRANSFORMED INTO THE SCATTERING MATRIX. C
C C
C VSWR AND FREQUENCY (NORMALIZED BY I.E+9 ) ARE WRITTEN TO THE C
C DATA FILE PVSWR.DAT. THE SCATTERING MATRIX AND FREQUENCY ARE C
C WRITTEN TO THE FILE SPARAM.DAT IN THE ORDER FREQUENCY,SII,S22, C
C S21,S22. C
C c

C
31 DO 36 IFRO = 1,NFS

FREQUEN(IFRQ) = FREQUE !IN HERTZ NOT GHz
WW = 2.*PI*FREQUE -

DO 32 NBET = 1,NCROSS
CUTFRE = FCUTOF(NBET)*I.OE+9
IF(FREQUE.LE.CUTFRE)THEN
WRITE(6,*)'AT THE ',NBET,'th CROSS SECTION: THE CUTOFF

$ FREQUENCY IS ',CUTFRE,' Hz ANr ! .E PROPAGATION FREQUENCY
$ IS ',FREQUE,' Hz. START OVER oifH HIGHER PROPAGATION FRED'

STOP 1000
ELSE
ENDIF
BETACNBET) = SQRT(RELPER*(WW/SOL)**2-USHS(NBET)/HH(NBET)**2)
ZIMP(NBET) = ALOG(WW*PERM/BETA(NBET))

32 CONTINUE
NEN = 4
RTOL = I.OE-B

ATOL = I.OE-B

DO 35 1 a 1,2
IF(I.EQ.1)THEN

YYY(1) = 1. ' INITIALIZE FORWARD WAVE TO (1,0) AT Z=O
YYY(2) = 0.
YYY(3) = 0.
YYY(4) z 0.

ELSE
YYY(1) = 0. !INITIALIZE BACKWARD WAVE TO (1,0) AT Z=O
YYY(2) = 0.
YYY(3) = 1.
YYY(4) a 0.

ENDIF
TT = 0.0

TOUT = 0.0
j DO 34 IKJ = 1,NCROSS-1

IFLAG I
TOUT U ZLOC(IKJ+1)

33 CALL DESOLV(F,NEN,YYY,TT,TOUT,RTOL,ATOL,IFLAG)
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IF(IFLAG.NE.2)60 TO 33
IF(I.EQ. 1)THEN

All a CMPLX(YYY(1),YYY(2))
A21 - CMPLX(YYYC3),YYY(4))

ELSE
A12 a CMPLX(YYY(1),YYY(2))
A22 a CPPLX(YYY(3),YYY(4))

END IF
34 CONTINUE
35 CONTINUE

ZETA - AII*A22 - A120A21
S1i -A21/A22
S22 a A12/A22
S21 aZETA/A22
S12 - l/A22
6AIMMAI = S11+((S12*S21*GAMAL)/C1.-S22*GAMIAL))
SAPIMA2 = S22+((S12*S21*SAMAS)/(1.-S11*6AMAS))
RHOWEl = CADS(SAMMAI)
RHOWE2 = CABS(GAMMA2)
VSWRl(IFRQ) = (I. + RHOWEI)/I. - RHOWEI)
VSWR2(IFRQ) m (I. +RHOWE2)/(1. - RHOWE2)
THEFRE - FREQUE/1.OE+9
WRITE (16,4) THEFRE
WRITE(161*)SI1,' .,S12
WRITE(16,*)S21( .,S22
WRITE(19,*)THEFRE,' 1,VSWRl(IFRQ)
FREQUE = FREQUE + DELF

A36 CONTINUE
CLOSE (17)
CLOSE (19)
CLOSE (20)
STOP
END

C
C FUNCTION SUBPROGRAM TO GENERATE AREA VALUES AS NEEDED
C
C INPUT VARIABLES:
C
C 1,3 - LOCATION OF THE POINT TO WHICH AREA VALUE IS FOUND
C IMAX,3PIAX - SIZE OF THE MATRIX IN I AND 3, RESPECTIVELY.
C JT,IS - POSITION OF THE RIDGE SIDE AND TOP
C
C OUTPUT: AREA - INTEGRATION AREA ELEMENT ASSOCIATED WITH THE FIELD
C POINT (1,J).
C

FUNCTION AREA(I, T, IS, IMAX ,3MAX)
AREA1l.
IF(C -2) 30, 1,2

1 AREAzAREA/2.
2 IF(J-JT)12,9,3
3 IF(I-IS)5,4,30
4 AREAxAREA/2.
5 IF(J-(JMAX-1))7,6,30
6 AREAzAREA/2.
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7 RETURN
a IF(I-IS)7191l0
9 AREAx.75

RETURN
10 AREA-AREA/2.
It IF(I-IMAX)716,30
12 IFCJ-2)30,10,11
30 AREA=O.

RETURN
END

C
C

SUBROUTINE SPLINE (N, X, Y, B, C, D)
INTEGER N
REAL X(N), Y(N), D(N), C(N), D(N)

C -

C THE COEFFICIENTS B(I), CCI), AND DCI), 1=1,2,...,N ARE COMPUTED
C FOR A CUBIC INTERPOLATING SPLINE
C
C 9(X) =- Y(I) + B(I)E(X-X(l)) + C(I)*(X-X(l))**2 + D(I).(X-X(I))**3
C
C FOR X(I) .LE. X .LE. X(I+I)
C
C INPUT..
C
C N a THE NUMBER OF DATA POINTS OR KNOTS (N.GE.2)
C X aTHE ABSCISSAS OF T1HE KNOTS IN STRICTLY INCREASING ORDER
C Y a THE ORDINATES OF THE KNOTS
C
C OUTPUT..
C
C B, C, D z ARRAYS OF SPLINE COEFFICIENTS AS DEFINED ABOVE.
C
C USING P TO DENOTE DIFFERENTIATION,
C
C Y(I) x SCX(I))
C B(I) z SP(X(I))
C C(I) z SPP(X(I))/2
C 'D(I) = SPPP(XCI))/6 (DERIVATIVE FROM THE RIGHT)
C
C THE ACCOMPANYING FUNCTION SUBPROGRAM SEVAL CAN BE USED
C TO EVALUATE THE SPLINE.
C
C

REAL T

C
NMI a N-I
IF ( N .LT. 2 ) RETURN
IF C N .LT. 3 ) GO TO 50

C
C SET UP TRIDIAGONAL SYSTEM
C
C B a DIAGONAL, D OFFDIAGONAL, C - RIGHT HAND SIDE.
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D(I) u X(2) - X(I)
C(2) a (Y(2) - Y(1))/DC1)
DO 10 I1 2, NMI

D(I) X(1+1) - XCI)
B(I) a2.*(DCI-1) *DCI))
C(1+1) a (YCI+l) -Y(l))DCI)
CCI) a C(1+l) - CCI)

10 CONTINUE
C
C END CONDITIONS. THIRD DERIVATIVES AT X(1) AND X(N)
C OBTAINED FROM DIVIDED DIFFERENCES
C

9(1) a -D(I)
3(N) z -D(N-1)
C(1) =0.

C(N) *0.

IF ( N .EQ. 3 ) 60 TO 15
C(1) x C(3)/(X(4)-XC2)) - CC2)/(X(3)-XCI))
C(N) z C(N-1)/(X(N)-X(N-2)) - C(N-2)/(X(N-1)-X(N-3))
CC1) z Cdl)*D(1)**2/CX(4)-Xdl))
C(N) a -C(N)*DCN-1)**2/(X(N)-X(N-3))

C
C FORWARD ELIMINATION
C

15 DO 20 I w 2, N
T z DCI-1)/B(I-1)
B(I) B (I) -T*D(I-1)
CCI) =CCI) -T*C(I-1)

20 CONTINUE
C
C BACK SUBSTITUTION
C

C(N) s C(N)IB(N)
DO 30 lB = 1, NMl

I = N-lB
C(I) = (CC(I) - DI)*C(I+1) )/BCI)

30 CONTINUE
C
C C(I) IS NOW THE SI6MACI) OF THE TEXT
C
C COMPUTE POLYNOMIAL COEFFICIENTS
C

B(N) = (Y(N) - Y(NMl))ID(NM1) + D(NMI)*(C(NMI) + 2.'CCN))
DO 40 1= 1, NMI

B(I) =(Y(1+1) -Y(I))/D(I) - D(I)*(C(1+1) + 2.*CiJ))
D(I) =(C(1+1) -C(I))/DCI)
CCI) z 3.*CCI)

40 CONTINUE
C(N) z 3.*C(N)
D(N) a D(N-1)
RETURN

C
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50 B(1) (Y(2)-Y(1))/(X(2)-X(1))
C(1) 0.
D(I) * 0.
B(2) * B(I)
C(2) - 0.
D(2) " 0.
RETURN
END

C
C -

SUBROUTINE SEVAL(N, U, X, Yj B, C, D, EVAL, DERIV)
INTEGER N
REAL U, X(N), Y(N), B(N), C(N), D(N), EVAL, DERIV

C
C THIS SUBROUTINE EVALUATES THE CUBIC SPLINE FUNCTION AND ITS
C FIRST DERIVITIVE
C
C SEVAL z Y(I) + B(I)*(U-X(I)) + C(I)*(U-X(I))**2 + D(I)I(U-X(I))**3
C DERIV = B(I) + 2*C(I)*(U-X(I)) + 3*D(I)a(U-X(l))**2
C
C WHERE X(I) .LT. U .LT. X(1+1), USING HORNER'S RULE
C
C IF U LT. X(I) THEN I = I IS USED.
C IF U .BE. X(N) THEN I = N IS USED.
C
C INPUT..
C -

C N a THE NUMBER OF DATA POINTS
C U = THE ABSCISSA AT WHICH THE SPLINE IS TO BE EVALUATED
C XY • THE ARRAYS OF DATA ABSCISSAS AND ORDINATES
C BCD a ARRAYS OF SPLINE COEFFICIENTS COMPUTED BY SPLINE
C
C IF U IS NOT IN THE SAME INTERVAL AS THE PREVIOUS CALL, THEN A
C BINARY SEARCH IS PERFORMED TO DETERMINE THE PROPER INTERVAL.
C

INTEGER 1, J, K
REAL DX
DATA I/ll
IF ( I .BE. N ) I 1
IF ( U .LT. X(I) ) 60 TO 10 % '
IF ( U .LE. X(I+1) ) 60 TO 30

C
C BINARY SEARCH
C

10 1 a I
J = N+I

20 K a (I+J)/2
IF ( U ,LT. X(K) ) J r K
IF ( U .BE. X(K) ) I " K
IF ( J .ST. [+1 ) 60 TO 20

C
C EVALUATE SPLINE
C

30 DX • U - X(I)
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EVAL a Y(I) + DX.(B(I) + DX*(C(I) + DX*D(I)))
DERIV a B(I) + DX*(2*C(I) + DX*3*D(I))
RETURN
END

C
C THIS PROGRAM COMPUTES THE INTEGRAL OF SOLYMAR'S BACKWARD COUPLING
C COEFFICIENT . THE METHOD USED IS TO PROVIDE INTERVAL END POINTS
C (FROMTO) AND THE ENTIRE ARRAY OF SPLINE COEFFICIENTS FOR THE FUNC-
C TION BEING INTEGRATED (FUNCTION IS APPROXIMATED BY A PEICEWISE
C CONTINIOUS CUBIC SPLINE). THE SUBROUTINE SEVAL IS USED TO EVALUATE
C THE INTEGRAND AT THE APPROPRIATE GAUSSIAN COORDINATES. THE VALUE OF
C THE INTEGRAL BETWEEN THE END POINTS IS - ANSW
C

SUBROUTINE 6AUSS(L,FROMTOXYBCDANSW)
REAL B(L),C(L),D(L),X(L),Y(L),PSI(4),WEI(4),UVVALDER
DATA PSI/-.339981,.339981,-.61136,.B61136/
DATA WEI/.652145,.652145,.347955,.347855/

C
C INPUT VARIABLES:
C
C FROM - LOWER BOUND OF INTEGRAL X(P)
C TO - UPPER BOUND OF INTEGRAL X(P+1)
C BCD - CUBIC SPLINE COEFFICIENTS OBTAINED FROM ROUTINE-SPLINE
C L - LENGTH OF BCD a LENGTH OF X OR Y IN MAIN-LINE
C XY - DATA POINTS FOR WHICH SPLINE COEFFICIENTS WERE FOUND
C
C OUTPUT:
C
C ANSW - VALUE OF THE INTEGRAL
C

ANSW a 0.
DO 1 K = 1,4

UV = FROM + ((TO-FROM)/2.)*(PSI(K) + 1)
CALL SEVAL(LUVX,YB,CD,VALDER)
FX a DER**2

1 ANSW = ANSW+ WEI(K)*FX
ANSW - ANSW*((TO-FROM)/2.)
RETURN

AEND
C
c

SUBROUTINE BLOCKS(AIBDSIBARIJBARIMAXJMAXWFITRFITHIIERR)
C
C THIS SUBROUTINE COMPUTES THE THE NUMBER OF BLOCKS EACH SIDE OF THE
C RIDGED GUIDE CROSS SECTION SHOULD BE BROKEN UP INTO. AS A MINIMUM
C THE LONGEST SIDE IS DIVIDED INTO 160 BLOCKS.
C
C THE USER SPECIFIES A REQUIRED FIT, IF THE WORST FIT ON
C ANY OF THE GUIDE SIDES EXCEEDS THIS, THE PROGRAM WILL ATTEMPT TO
C INCREASE THE MESH SIZE. THIS PROCESS CONTINUES UNTILL THE MESH
C IS TOO LARGE (PRESENTLY SET TO 1000: CAN BE MADE LARGER) OR THE
C REQUIRED FIT IS ACHIEVED.
C
C INPUT VARIABLES:
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C
C RFIT - REQUIRED FIT i THIS VARIABLE IS A
C LIMIT ON MAXIMUM ERROR OF FIT ON ANY
C GUIDE DIMENSION (INCHES)
C A,DqS - STANDARD RIDGED WAVEGUIDE DIMENSIONS
C (INCHES)

C ------ A--------
C *.*. ... ,--A - WAVEGUIDE WIDTH
C .. . 'B - WAVEGUIDE HEIGHT
C * ... * 'D - SPACE BETWEEN RIDGES
C. D *B S -RIDGE WIDTH

C <5>
C
C OUTPUT VARIABLES:
C
C IBAR, JBAR - # OF BLOCKS IN RIDGE HEIGHT AND HALF
C OF 0 IN RIDGE WIDTH
C IMAX, JMAX - HALF THE # OF BLOCKS IN GUIDE WIDTH
C AND HEIGHT, RESPECTIVELY
C WFIT - ACTUAL FIT OBTAINED, WILL ALWAYS BE
C BETTER THAN REQUIRED FIT(RFIT) IF
C IERR - 0
C
C IERR z 1 IF THE MATRIX HZ IN THE MAIN
C PROGRAM IS TOO SMALL TO FIT TO RFIT
C - 0 IF RFIT IS MET
C
C H - THE SIZE OF MESH BLOCK FOUND TO
C SATISFY RSIZ.
C

CF a 1.0/2.
A2 - A*CF
B2 - B*CF
D2 - D*CF
S2 a S*CF
BMD - B2-D2
WFIT = 0.0
KNT -165

99 KNT zKNT+1I
F a I./(FLOAT(KNT)*2.)
IF CA2. LE.B2)THEN

H a FiB
ELSE

A= F*A
END IF
IF CA2.LE.B2) THEN

JMAX - KNT

SIM a A2/H

IMAX z NINT(SIM) i
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SJM a B2/H
JMAX a NINT(SJM)

ENDIF
SJB = S2/H
JBAR a NINT(SJB)
SI9 a BMD/H
IBAR a NINT(SIB)
IF(A2.LE.B2)THEN

D1 = ABS(FLOAT(IMAX)*H - A2)

ELSE
D1 = ABS(FLOAT(JMAX)*H - B2)

ENDIF
D2 = ABS(FLOAT(JBAR)*H - 92)
D3 = ABS(FLOAT(IBAR)*H - BMD)
WFIT = AMAXI(DID2,D3)
IF(WFIT.6T.RFIT)THEN
IF(KNT.LT.1000)60 TO 99
IERR = I !NEED MATRIX LARGER THAN IN MAIN HZ(IO00,1000)
60 TO 999

ELSE
IERR = 0

ENDIF
999 RETURN

END

C
SUBROUTINE F(TYYDOT)
COMMON /FVARS/ ZLOC,COUPLZIMP,BETA

COMMON NCROSS
REAL TZIMP(IOI),BETA(IO1),COUPL(lOl),EVAL,DERIV,
SBBB(IO),CCC(IOI),DDD(IOI),ZLOC(1Ol),Y(4),YDOT(4)

C SUBROUTINE F CONTAINS THE REAL FORM OF SOLYMAR'S NORMAL MODE *
C EQUATIONS. THESE EQUATIONS ARE WRITTEN IN THE FORMAT REQUIRED *
C BY SHAMPINE'S ORDINARY DIFFERENTIAL EQUATION SOLVING ROUTINE *
C THERE ARE FOUR EQUATIONS: ONE FOR THE REAL AND IMAGINARY PART OF *
C THE FORWARD AND BACKWARD TEl0]] NORMAL MODES. (SHAMPINES *
C ROUTINE IS CALLED: DESOLV) *
C
C INPUT VARIABLES: *
C *
C T - CURRENT AXIAL POSITION WITHIN THE TRANSITION (Z) *
C Y - A VECTOR CONTAINING THE AMPLITUDES OF THE NORMAL *
C MODES Y(l) = A.(REAL), Y(2) = A4IIMASINARY),
C Y(3) = A-(REAL), AND Y(4) = A-(IMAGINARY). *
C
C OUTPUT VARIABLES: *
C
C YDOT - A VECTOR CONTAINING dA/dz AT Z=T. ITS ELEMENTS *
C ARE ORDERED LIKE THOSE OF Y. *

C
C THE PROPAGATION CONSTANT (B) IS A FUNCTION OF Z AND IS ONE OF THE
C COUPLING COEFFICIENTS. SUBROUTINE SPLINE FITS A CUBIC SPLINE TO
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C BETA AND GIVES ITS VALUE (B) AT ZuT. THIS SAME PROCEEDURE IS USED
C TO OBTAIN SOLYtIARS COUPLING COEFFICIENT St1031101 AND d~ln(K)I/dz
C AT Z -T

C

C

CALL SPLINE(NCROSS,ZLOC,BETA,BBB,CCC,DDD)
CALL SEVAL(NCROSS,T,ZLOC,BETA,BBB,CCC,DDD,EVALIDERIV)
B a EVAL
CALL SPLINE(NCROSS,ZLOC,COUPL,BBB,CCC,DDD)
CALL SEVAL(NCROSS,T,ZLOC,COUPL,DBB,CCC,DDD,EVAL,DERIV)
S a EVAL-4
CALL SPLINE (NCROSS1 ZLOC, ZIMP ,BBB,CCC,DDD)
CALL SEVAL(NCROSS,T,ZLOC,ZIMP,BBB,CCC,DDD,EVAL,DERIV)
Z - *.S*DERIV
D - S-Z
YDOT(1) = 9*V(2) + D'Y(3)
YDOT(2) = -D*Y(I) + D*Y(4)
YDOT(3) =D*Y(1) - B*Y(4)
YDDT(4) = D*Y(2) + B*Y(3)
RETURN
END

-96-

% % % %



C DESOLV.FOR
C SHAIPINE'S ODE SOLVER
C

SUBROUTINE DESOLV(F,NEON,Y,T,TOUT1 RELERRABSERR,IFLA6)
LOGICAL START,CRASH,STIFF
DIMENSION Y(NEON),PSI(12)

DIMENSION YY(20),WT(20),PHI(20,16),P(20),YP(20),YPOUT(20)
cc COMMON ICDEI YY,WT,PHIIP,YPYPOUT,PSI

EXTERNAL F
DATA FOURU/2.9802324e-B/
DATA MAXNUPI/500/
IF (NEON Ilt. I .OR. NEON .gt. 20) 60 TO 10

IF(T.ED.TOUT) 60 TO 10
IF (RELERR .lt. 0.0 .OR. ABSERR Ilt. 0.0) 60 TO 10
EPS = AMAXI(RELERR,ABSERR)
IF (EPS .1e. 0.) GO TO 10
IF (IFLAS .eq. 0.0) 60 TO 10
ISN = ISI6N(l,IFLAG)W.
IFLAS = IABS(IFLAG)
IF (IFLAG .eq. 1) 60 TO 20 '.

IF (T .ne. TOLD) 60 TO 10
IF CIFLAS gqe. 2 .AND. IFLAG .1e. 5) 60 TO 20

10 IFLAS 6
RET URN

20 DEL = TOUT-T
* ABSDEL =ABS(DEL)

TEND =T4IO.0IDEL

IF (ISN Ilt. 0) TEND =TOUT

NOSTEP =0

KLE4 =0

STIFF = FALSE.
RELEPS =RELERR/EPS

ABSEPS =ABSERR/EPS

IF (IFLA6 .eq. 1) 60 TO 30
IF (ISNOLD .lt. 0) GO TO 30
IF (DELSSN*DEL .gt. 0.0) 60 TO 50

30 START = .TRUE.
X = T

DO 40 L 1,NEON
40 YY(L) =Y(L)

DELSGN =SI6N(1.0,DEL)

H x SIGN(AMAXI(ABS(TOUT-X),FOURLJ*ABS(X)),TOUT-X)
50 IF (ABS(X-T) .lt. ABSDEL) 60 TO 60

CALL INTRP (X,YY,TOUT,Y,YPOUT,NEQN,KOLD,PHI IPSI)
IFLAS - 2
T a TOUT
TOLD =T

ISNOLD =ISN

RETURN
*60 IF (ISN .gt. 0 .DR. ABS(TOUT-X) .ge. FOURU*ABS(X)) 60 TO 80

H = TOUT-X
'I CALL F(X,VY,YP)

DO 70 L a 1,NEQN
70 Y(L) =YY(L)4H*VP(L)
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IFLA6, a 2
T -TOUT
TOLD a T
ISNOLD x ISN
RETURN

so IF (NOSTEP Ilt. !AXNUM) 60 TO 100
IFLA6 = ISN*4
IF (STIFF) IFLAG uISN*5

DO 90 L = 1,NEGN
90 Y(L) = YY(L)

TOLD =T

ISNOLD I
RETURN

100 H = S16N(AMINI(ABS(H),ABS(TEND-X)),H)
DO 110 L =1,NEQN

110 WT(L) =RELEPS*ABS(YY(L)).ABSEPS

CALL STEP (X ,YY,F,NEQN,H,EPS,WT,START,HOLD,
1 K,KOLD,CRASH,PHI ,P,YP,PSI)

IF (.NOT. CRASH) 60 TO 130
IFLAS =ISN*3

RELERR =EPS*RELEPS

ABSERR =EPS*ABSEPS

DO 120 L = ,NEQN
120 Y(L) =YY(L)

TOLD =T

ISNOLD I
RETURN

130 NOSTEP zNOSTEP+1
KLE4 =KLE4+1

IF (KOLD .gt. 4) KLE4 =0

IF (KLE4 gqe. 50) STIFF = TRUE.
60 TO 50
END

C
C .

C
C
C
C

SUBROUTINE STEP (X,VINEQN,H,EPS,WT,START,HOLD,
1 K,KOLD,CRASH,PHI ,P,YP,PSI)

LOGICAL START,CRASH,PHASE1 ,NORND
DIMENSION Y(NEQN),WT(NEQN),PHI(NEQN,16),P(NEQN),YP(NEON),

1 PSI(12),GSTR(13),TWO(13)
DIMENSION ALPHA(12),BETA(12),SIG(13),W(12),V(12),6(13)

cc COMMON /CSTEP/ GSTR,TWO,ALPHA1BETA,516,W,V,G
EXTERNAL F1.
DATA TWOU,FOURU/1.4901162E-6,2.9802324E-B/
DATA TWO/2.,4.,B.,16.,32.,b4.,128.,256.,512.,

1 1024.,2048.,4096.,8192./
DATA 6STR /.5,.0833,.0417, .0264,.0188,.0143, .0114,

1 .00936,.00789,.00679,.00592,.00524,.00468/ N
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DATA 6(1) ,6(2) ,S16(I) /l.,.5,I. /
CRASH = .TRUE.
IF (ABS(H) .ge. FOIJRU*ABS(X)) SO TO 5
H = SIGN(FOIJRU*ABS(X),H)
RET URN

5 P5EPS = .5*EPS
ROUND = 0.
DO 10 L = I,NEQN -

10 ROUND = ROUND+(Y(L)/WT(LflE42
ROUND = TWOU*SQRT(ROUND) -

IF (PSEPS .ge. ROUND) GO TO 15

EPS a 2.*ROUND*(1.+FOURU)
RETURN .

15 CRASH = .FALSE.
IF (.NOT. START) 60 TO 99
CALL F (X,Y,YP)
SUM = 0.
DO 20 L I ,NEON
PHI(L,1) =YP(L)

PHI(L,2) 0.
20 SUM = SUM4(YP(L)/WT(L))**2

SUM = SQRT(SUM)
ABSH = ABS(H)
IF (EPS .lt. 16.*SUM*H*H) ABSH .25*SQRT(EPS/SUM)

H = SI6N(AMAXI(ABSH,FOURU*ABS(X)),H)
HOLD = 0.
K =I
KOLD =0

START = FALSE,
PHASEI TRUE.
NORND T .RUE.
IF (P5EPS .gt. 100.*ROUND) GO TO 99

NORND = FALSE.
DO 25 L 1,NEON

25 PHI(L,15) =0.

99 IFAIL 0
100 KPI K+1

KP2 =K+2

KMI x K-1
KM12 = K-2
IF (H .ne. HOLD) NS 0 0d

NS MINO(NS+X1 KOLD41)
NSP1 NS+1
IF (K .1t. NS) 60 TO 199

BETA(NS) 1 .
REALNS =NS

ALPHA(NS) = ./REALNS
TEMPI = H*REALNS

A S16(NSPl) =1.

IF (K Ilt. NSPI) 60 TO 110

DO 105 I1 NSP1,K

TEMP2 = PSI(1111)

PSI(1111) =TEMPI
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BETA(I) *BETA(IN1)#PSI (II)/TEI P2
TEMPI TEMP2.H
AIPHACI) =H/TEMPI

REALI a I
105 SIG(I4I) REALI*ALPHA(1)*S16(1)
110 PSI(K) =TEMPI

IF (NS .gt. 1) 60 TO 120
DO 115 19 = I,K
TEMP3 z IG*(IO+I)
V(IG) z 1./TEMP3

115 WHO0) a V(I9)
60 TO 140

120 IF (K .1e. KOLD) 60 TO 130
TEMP4 K*KPI
V(K) * .ITEPIP4
NSI 2 *NS-2

IF (NSM2 Ilt. 1) 60 TO 130
DO 125 J = 1,NSM2
I z K-J

125 V(I) *V(I)-ALPHA(J+1)*V(I41)

130 LIMITI KPI-NS
TEMP5 ALPHA(NS)
DO 135 IQ = I,LIPMITI
V(I9) =V(Ig)-TEMP5*Y(Ig+1)

135 W(19) =V(I0)

6(NSPI) =W(I)

140 NSP2 = NS+2
IF (KP1 AIt. NSP2) 60 TO 199
DO 150 I1 NSP2,KP1
LIPIIT2 =KP2-l

TEMP6 - ALPHA(I-I)
DO 145 ID - I,LIMIT2

145 W(IgI) =W(Ig)-TEMP6*WCIQ+1)

150 6(1) =kI)

199 CONTINUE
IF (K Alt. NSP1) 60 TO 215
DO 210 I - NSPI,K
TEMPI a DETACI)
DO 205 L - I,NEQN

205 PHI(L,I) = TEtI*PHICL,I)
210 CONTINUE
215 DO 220 L = 1,NEDN

PHICL,KP2) =PHI(L,KPI)

PHI(L,KPI) =0. TROUBLE? -

220 P(L) *0.

DO 230 J - 11K
I xKP1-J
IPI a 1+1
TEMP2 = 6(I)
DO 225 L = I,NEGN
P(L) *P(L)+TEMP2*PHI(L,1)

225 PHI(L,I) =PHI(L,I).PHI(L1 IPI)
230 CONTINUE

IF (NORND) 60 TO 240 -
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DO 235 L a 1,NEDN
TAU a H*P(L)-PHI(L,l5)
P(L) a Y(L)*TAU

235 PHI(L,16) = P(L)-Y(L))-TAU
60 TO 250

240 DO 245 L I ,NEQN
245 P(L) = Y(L)*H*P(L)
250 XOLD - X

ADSH c ABS(H)
CALL F (X,P,YP)
ERKil2 m 0.
ERKMl a 0.
ERK - 0.
DO 265 L a 1,NEQN
TEIIP3 c ./WT(L)
TEMP4 aYP(L)-PHI(L,l)
IF (Kil2) 265,260,255

255 ERKPI2 aERKM24I(PHI(L,KI)+TEMP4)*TEMP3)**2
260 ERKMl a ERKMI+((PHI(L,K).TEilP4)*TEMP3)**2
265 ERK =ERK+(TEMP4*TEMP3)**2

IF (KM2) 280,275,270
270 ERKII2 a ABSH*S16(KMI)*6STR(KI2)*SQRT(ERKl2)
275 ERKMl a ABSH*S16(K)*6STR(KMI)h*SORT(ERKIl)
280 TEMPS a ABSH*SQRT(ERK)

ERR a TEMP5*(6(K)-G(KPl))
ERK vTEMP5'616(KPI)*GSTR(K)
KNEW - K
IF (Kil2) 299,290,295

295 IF (AMAXI(ERKMI,ERKM2) .1e. ERK) KNEW =KMIl

60 TO 299
290 IF (ERKIII .1e. .5*ERK) KNEW 2KMIl

299 IF (ERR .1e. EPS) 60 TO 400
PHASEI = .FALSE.
X = XOLD
DO 310 1 - l,K
TEMPI = ./BETA(Il
IPI - 1+1
DO 305 L a I,NEQN

305 PHI(L,I) aTEIPIi(PHI(L,I)-PHI(LIIPI))
310 CONTINUE

IF (K Ilt. 2) 60 TO 320
DO 315 1 = 2,K

315 PSI(I-I) = PSI(I)-H
320 IFAIL aIFAIL+l

TEMP2 = .5
IF (IFAIL-3) 335,330,325

325 IF (PSEPS Ilt. .25*ERK) TEFIP2 =SQRT(P5EPS/ERK)

.'330 KNEW z 1
335 H = TEMP2*H

K a KNEW
IF (ABS(H) .9e. FOURU*ABS(X)) 60 TO 340
CRASH a .TRUE.
H 3SI6N(FOURU*ABS(X),H)
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EPS a EPS+EPS
RETURN

340 60 TO 100
400 KOLD aK

HOLD a H
TEMPI = H*6CKPI)
IF (NORND) 60 TO 410
DO 405 L - I,NEQN
RHO =TEMIP*(YP(L)-PHI(L,1))-PHI(L,16)

Y(L) =P(L)+RHO

405 PHI(L,15) = (Y(L)-P(L))-RHO
60 TO 420

410 DO 415 L =1,NEQN

415 Y(L) a P(L)+TEMIP*(YP(L)-PHI(L,1))
420 CALL F (X,Y,YP)

DO 425 L - I,NEQN
PHI(L,KP1) - YP(L)-PHI(Ll1)

425 PHI(L,KP2) = PHI(L,KP1)-PHI(L,KP2)
DO 435 1 a ,K
DO 430 L = ,NEON

430 PHI(L,I) z PHI(L,I)+PHI(L,KPI)
435 CONTINUE

ERKPI a 0.
IF (KNEW euq. KMIl DR. K .eq. 12) PHASEI = ALSE.
IF (PHASE!) 60 TO 450
IF (KNEW euq. KMIl) 60 TO 455
IF (KPI gqt. NS) 60 TO 460
DO 440 L = l,NEQN

440 ERKP1 = ERKPI+CPHI(L,KP2)/WT(L))**2
ERKPI = ABSH*GSTR(KP1)*SQRT (ERKP1)
IF (K .gt. 1) 60 TO 445
IF (ERKPI .ge. .5*ERK) 60 TO 460
60 TO 450 Y

445 IF (ERKMI .1e. AMINI(ERK,ERKP1)) 60 TO 455
IF (ERKP1 gqe. ERK *OR. K .eq. 12) 60 TO 460

450 K =KPI

ERK =ERKPI

60 TO 460
455 K =KMIl

ERK =ERKIl

460 HNEW =H+H

IF (PHASEI) 60 TO 465
if(p5eps.ge.erk*two(k+1)) go to 465

HNEW a H
IF (P5EPS .ge. ERK) 6O TO 465
TEPIP2 z K+1
R =(P5EPS/ERK)**(1./TEMP2)

HNEW = ABSH*AMAXI(.5,AMINI(.9,R))
HNEW z SIGN(AIIAXI(HNEW,FOURU*ABS(X)),H)

*465 H = HNEW
* RETURN

END
C
C
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C
C

C SUBROUTINE INTRP (X,Y,XOUT,YOUTYPOUT,NEQN,KOLD,PHIsPSI)

DIMENSION Y(NEgN),YOUT(NEON),YPOUT(NEQN),PHI(NE6N,16)
DIMENSION PSI(12)16(13),W(13),RHC(13)
DATA 6(1) ,RHO(1)/1. ,1./

HI x XOUT-X 
4~

KI cK OLD 4.
KIPI = KI+1
DO 5 1 1,KI
TEMPI I

5 W(I) = 1./TEMPI
TERM = 0.
DO 15 J = 2,KI
JM1 = J-1
PSIJM1 PSI(JMl)
GAMMA *(HI+TERM)/PSIJM1

ETA z HI/PSIJMI
LIMITI a KIP1-J
DO 10 I a I,LIII

10 Will) S AMMA*W(l)-ETA*W(I+1)
6(3) =W(I)

RHO(3) z SAMMA*RHO(JMI)
15 TERM =PSIJMI

DO 20 L - 1,NEQN
YPOUT(L) z 0.

20 YOUT(L) z 0. 
,-

DO 30 J - I,KI

I =KIPI-J
TEMP2 -6(I)
TEMP3 = RHOCI) 

-

DO 25 L - 1,NEQN
YOUT(L) - YOUT(L)+TEMP2*PHI(LI)

25 YPOUT(L) = YPOUT(L)+TEMP3*PHI(L,I)
30 CONTINUE

DO 35 L - 1,NEON 
4

35 YOUT(L) =Y(L)+HI*VOUT(L)
RETURN
END
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APPENDIX C

DATA FILES FOR A WR-90 TO WRD-750 COSINE IMPEDANCE TAPER

RSIZ .DAT

This file contains the data used by RIVSWR to compute the VSWR

profile of the cosine impedance transition presented in Section IV. The

first line contains the number of cross sections for which information

is given. Every two lines thereafter contain information for a particu-

lar cross section. The first of these contains a, b, d, s and z, which

are the standard dimensions for ridged waveguide and axial position,

respectively. The second line contains information about the slopes of

the waveguide walls, tan 01, tan 02, tan 03 and tan 04. Figure 7 in the

* text shows how they correspond to the waveguide wall.

EIGDAT.DAT

This file contains the coupling coefficient data which were saved

by RIVSWR.

P VS WR.DAT

The first and second columns contain frequency (GHz) and input

VSWR data.

SPARAM.DAT

The rows of this data file contain in order,

frequency (GHz)

L1 $12
S2 1, 22"

etc.
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RSIZ. DAT
101
0.9000000 0.4000000 0.4000000 0.1730000 O.OOOOOOOE+00

-0.1045000 -3.9499998E-02 O.OOOOOOOE+00 -0.1386580
0.9979100 0.3992100 0.3966897 0.1730000 1.0000001E-02

-0.1045000 -3.9499998E-02 O.O000000E+00 -0.1465272
0.8959200 0.3984200 0.3951645 0.1730000 2.0000001E-02

-0.1045000 -3.949999BE-02 O.OOOOOOOE+00 -0.1538023
0.8937300 0.3976300 0.3936478 0.1730000 3.0000001E-02
-0.1045000 -3.949999BE-02 O.OOOOOOOE+00 -0.1605045
0.8916400 0.3968400 0.3896241 0.1730000 4.0000003E-02
-0.1045000 -3.9499998E-02 O.OOOOOOOE+O0 -0.1666548

.' 0.8895500 0.3960500 0.3834169 0.1730000 5.0000001E-02
-0.1045000 -3.9499998E-02 O.OOOOOOOE+00 -0.1722735
0.8874600 0.3952600 0.3818693 0.1730000 6.0000002E-02
-0.1045000 -3.9499998E-02 O.OOOOOOOE+00 -0.1773811 "
0.853700 0.3944700 0.3780915 0.1730000 7.00000OOE-02

-0.1045000 -3.9499998E-02 O.OOOOOOOE+00 -0.1819977
0.8832800 0.3936800 0.3724256 0.1730000 8.0000006E-02

-0.1045000 -3.9499998E-02 O.OOOOOOOE+00 -0.1861429
0.8811900 0.3928900 0.3710971 0.1730000 9.0000004E-02

-0.1045000 -3.9499998E-02 O.OOOOOOOE+00 -0.1898363
0.8791000 0.3921000 0.3654709 0.1730000 0.1000000

-0.1045000 -3.9499998E-02 O.OOOOOOOE+00 -0.1930969
0.8770100 0.3913100 0.3623646 0.1730000 0.1100000

-0.1045000 -3.9499990E-02 O.OOOOOOOE+00 -0.1959438
0.6749200 0.3905200 0.3578277 0.1730000 0.1200000

-0.1045000 -3.9499999E-02 O.OOOOOOOE+00 -0.1983955
0.8728300 0.3897300 0.3541512 0.1730000 0.1300000
-0.1045000 -3.9499999E-02 O.OOOOOOOE+00 -0.2004704
0.8707400 0.389400 0.3495793 0.1730000 0.1400000
-0.1045000 -3.9499999E-02 O.OOOOOOOE+00 -0.2021862
0.8686500 0.381500 0.3463731 0.1730000 0.1500000
-0.1045000 -3.9499998E-02 O.OOOOOOOE+00 -0.2035608
0.8665600 0.3873600 0.3408964 0.1730000 0.1600000
-0.1045000 -3.9499996E-02 O.OOOOOOOE+00 -0.2046114
0.8644700 0.3865700 0.3383701 0.1730000 0.1700000

-0.1045000 -3.9499990E-02 O.OOOOOOOE+00 -0.2053549
0.8623800 0.3857800 0.3329767 0.1730000 0.1800000

-0.1045000 -3.949999BE-02 O.OOOOOOOE+00 -0.2058081
0.9602900 0.3849900 0.3291577 0.1730000 0.1900000

. -0.1045000 -3.9499996E-02 O.OOOOOOOE+00 -0.2059870

0.8582000 0.3842000 0.3261495 0.1730000 0.2000000
-0.1045000 -3.9499996E-02 O.OOOOOOOE+00 -0.2059076
0.8561100 0.3834100 0.3206090 0.1730000 0.2100000

-0.1045000 -3.9499998E-02 O.OOOOOOOE+00 -0.2055855
0.6540200 0.3826200 0.3167846 0.1730000 0.2200000

-0.1045000 -3.9499999E-02 O.OOOOOOOE+00 -0.2050357
0.8519300 0.3818300 0.3136587 0.1730000 0.2300000

-0.1045000 -3.9499996E-02 O.OOOOOOOE+00 -0.2042728
0.8498400 0.3810400 0.3090702 0.1730000 0.2400000

-0.1045000 -3.9499998E-02 0.OOOOOOOE+00 -0.2033113
0.9477500 0.3802500 0.3040980 0.1730000 0.2500000
-0.1045000 -3.949999BE-02 O.OOOOOOOE+00 -0.2021649
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0.8456600 0.3794600 0.3008372 0.1730000 0.2600000
-0.1045000 -3.9499998E-02 O.000000E+00 -0.2008473
0.8435700 0.3786700 0.2975298 0.1730000 0.2700000

-0.1045000 -3.9499998E-02 O.OOOOOOOE+00 -0.1993712
0.8414900 0.3778800 0.2934780 0.1730000 0.2900000
-0.1045000 -3.9499998E-02 O.OOOOOOOE+00 -0.1977493
0.8393900 0.3770900 0.2888513 0.1730000 0.2900000
-0.1045000 -3.9499999E-02 O.OOOOOOOE+00 -0.1959938
0.8373000 0.3763000 0.2946795 0.1730000 0.3000000

-0.1045000 -3.9499998E-02 O.OOOOOOOE+00 -0.1941162
0.8352100 0.3755100 0.2813221 0.1730000 0.3100000

-0.1045000 -3.9499999E-02 0.OOOOOOOE+00 -0.1921277
0.8331200 0.3747200 0.2779573 0.1730000 0.3200000

-0.1045000 -3.9499998E-02 O.OOOOOOOE+00 -0.1900391
0.8310300 0.3739300 0.2745904 0.1730000 0.3300000

-0.1045000 -3.9499999E-02 O.OOOOOOOE+00 -0.1978605
0.8289400 0.3731400 0.2705520 0.1730000 0.3400000

-0.1045000 -3.9499998E-02 O.OOOOOOOE+00 -0.1856017
0.8268500 0.3723500 0.2664271 0.1730000 0.3500000

-0.1045000 -3.9499999E-02 O.OOOOOOOE+00 -0.1832718
0.8247600 0.3715600 0.2623834 0.1730000 0.3600000

-0.1045000 -3.9499998E-02 O.O000000E+O0 -0.1808798
0.8226700 0.3707700 0.2588427 0.1730000 0.3700000

-0.1045000 -3.9499999E-02 O.OOOOOOOE+00 -0.1784336
0.8205800 0.3699800 0.2555849 0.1730000 0.3800000

-0.1045000 -3.9499999E-02 O.OOOOOOOE+00 -0.1759411
0.8184900 0.3691900 0.2523531 0.1730000 0.3900000

-0.1045000 -3.9499999E-02 O.OOOOOOOE+00 -0.1734095
0.8164000 0.3684000 0.2491513 0.1730000 0.4000000

-0.1045000 -3.949999SE-02 O.OOOOOOOE+O0 -0.1709455
0.9143100 0.3676100 0.2459829 0.1730000 0.4100000
-0.1045000 -3.9499998E-02 O.OOOOOOOE+00 -0.1682553

0.9122200 0.3669200 0.2425409 0.1730000 0.4200000
-0.1045000 -3.9499999E-02 O.OOOOOOOE+00 -0.1656446
0.8101300 0.3660300 0.2389276 0.1730000 0.4300000
-0.1045000 -3.9499999E-02 O.OOOOOOOE+00 -0.1630186
0.9080400 0.3652400 0.2353741 0.1730000 0.4400000
-0.1045000 -3.9499998E-02 O.OOOOOOOE+00 -0.1603820
0.8059500 0.3644500 0.2319794 0.1730000 0.4500000
-0.1045000 -3.9499998E-02 O.OOOOOOOE+00 -0.1577389
0.8038600 0.3636600 0.2287190 0.1730000 0.4600000
-0.1045000 -3.9499998E-02 O.OOOOOOOE+00 -0.1550931

0.8017700 0.3628700 0.2258414 0.1730000 0.4700000
-0.1045000 -3.9499999E-02 O.OOOOOOOE+00 -0.1524479
0.7996800 0.3620800 0.2230154 0.1730000 0.4800000

-0.1045000 -3.9499999E-02 O.OOOOOOOE+00 -0.1498060

0.7975900 0.3612900 0.2202427 0.1730000 0.4900000
-0.1045000 -3.9499998E-02 O.OOOOOOOE+00 -0.1471698
0.7955000 0.3605000 0.2175252 0.1730000 0.5000000

-0.1045000 -3.9499998E-02 O.OOOOOOOE+00 -0.1445409
0.7934100 0.3597100 0.2145695 0.1730000 0.5100001

-0.1045000 -3.9499998E-02 O.OOOOOOOE+00 -0.1419210
0.7913200 0.3589200 0.2113928 0.1730000 0.5200000

-0.1045000 -3.9499998E-02 O.OOOOOOOE+00 -0.1393111
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0.7992300 0.3591300 0.2082622 0.1730000 0.5300000
-0.1045000 -3.9499996E-02 O.OOOOOOOE+00 -0.1367118
0.7971400 0.3573400 0.2054256 0.1730000 0.5400000

-0.1045000 -3.9499999E-02 O.O000000E+00 -0.1341233
0.7950500 0.3565500 0.2030282 0.1730000 0.5500000

-0.1045000 -3.949999BE-02 O.O000000E+00 -0.1315455
0.7929600 0.3557600 0.2006939 0.1730000 0.5600000

-0.1045000 -3.9499998E-02 O.OOOOOOOE+00 -0.1289779
0.7808700 0.3549700 0.1984235 0.1730000 0.5700001

-0.1045000 -3.9499999E-02 O.OOOOOOOE+00 -0.1264198
0.7787800 0.3541800 0.1956038 0.1730000 0.5800000

-0.1045000 -3.9499999E-02 O.OOOOOOOE 00 -0.1238704
0.7766900 0.3533900 0.1926953 0.1730000 0.5900000

-0.1045000 -3.9499998E-02 O.OOOOOOOE+00 -0.1213282
0.7746000 0.3526000 0.1903209 0.1730000 0.6000000

-0.1045000 -3.9499996E-02 O.OOOOOOOE+00 -0.1187916
0.7725100 0.3518100 0.1883315 0.1730000 0.6100000

-0.1045000 -3.9499998E-02 O.OOOOOOOE+00 -0.1162590
0.7704200 0.3510200 0.1864098 0.1730000 0.6200000

-0.1045000 -3.9499998E-02 O.OOOOOOOE+00 -0.1137288
0.7683300 0.3502300 0.1836652 0.1730000 0.6300001

-0.1045000 -3.9499996E-02 0.OOOOOOOE+00 -0.1111990
0.7662400 0.3494400 0.1811616 0.1730000 0.6400000

-0.1045000 -3.9499996E-02 O.OOOOOOOE+00 -0.1066674

0.7641500 0.3466500 0.1794583 0.1730000 0.6500000
-0.1045000 -3.9499998E-02 O.OOOOOOOE+00 -0.1061323
0.7620600 0.3478600 0.1776851 0.1730000 0.6600000

-0.1045000 -3.9499998E-02 O.OOOOOOOE+00 -0. 1035911
0.7599700 0.3470700 0.1750171 0.1730000 0.6700000

-0.1045000 -3.9499998E-02 O.OOOOOOOE+00 -0.1010424
0.7578800 0.3462800 0.1732186 0.1730000 0.6800000

-0.1045000 -3.9499998E-02 O.OOOOOOOE+00 -9.8484367E-02
0.7557900 0.3454900 0.1718029 0.1730000 0.6900001

-0.1045000 -3.9499998E-02 O.OOOOOOOE+00 -9.5915072E-02
0.7537000 0.3447000 0.1692866 0.1730000 0.7000000

-0.1045000 -3.9499998E-02 O.OOOOOOOE+00 -9.3333460E-02
0.7516100 0.3439100 0.1676618 0.1730000 0.7100000

-0.1045000 -3.9499998E-02 O.OOOOOOOE+00 -9.0738095E-02 "
0.7495200 0.3431200 0.1662379 0.1730000 0.7200000
-0. 1045000 -3.9499998E-02 O.OOOOOOOE+00 -8.8128664E-02
0.7474300 0.3423300 0.1638892 0.1730000 0.7300000
-0. 1045000 -3.9499998E-02 O.OOOOOOOE+00 -8.5504375E-02 -.

0.7453400 0.3415400 0.1626361 0.1730000 0.7400000
-0. 1045000 -3.9499998E-02 O.OOOOOOOE+00 -8.2865514E-02
0.7432500 0.3407500 0.1607577 0.1730000 0.7500001

-0.1045000 -3.9499999E-02 O.OOOOOOOE+00 -8.0212869E-02
0.7411600 0.3399600 0.1595091 0.1730000 0.7600001
-0.1045000 -3.9499999E-02 O.OOOOOOOE+00 -7.7547632E-02
0.7390700 0.3391700 0.1578416 0.1730000 0.7700000

-0.1045000 -3.9499998E-02 O.OOOOOOOE+00 -7.4872293E-02
0.7369900 0.3363600 0.1564951 0.1730000 0.7800000

-0.1045000 -3.9499998E-02 O.OOOOOOOE+00 -7.2189234E-02
0.7349900 0.3375900 0.1549703 0.1730000 0.7900000

-0.1045000 -3.9499999E-02 O.OOOOOOOE+00 -6.9502242E-02
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0.7328000 0.3368000 0.1537872 0.1730000 0.8000000
-0.1045000 -3.9499998E-02 O.O000000E+00 -6.6816203E-02
0.7307100 0.3360100 0.1521432 0.1730000 0.8100001
-0.1045000 -3.9499998E-02 O.O000000E+00 -6.4136811E-02
0.7286200 0.3352200 0.1513782 0.1730000 0.8200001
-0.1045000 -3.949999BE-02 O.O000000E+00 -6.1471049E-02
0.7265300 0.3344300 0.1496186 0.1730000 0.8300000
-0.1045000 -3.9499998E-02 O.OOOOOOOE+00 -5.8926629E-02
0.7244400 0.3336400 0.1489111 0.1730000 0.8400000
-0.1045000 -3.9499998E-02 O.OOOOOOOE+00 -5.6213412E-02
0.7223500 0.3328500 0.1476545 0.1730000 0.8500000

-0.1045000 -3.9499999E-02 O.OOOOOOOE+00 -5.3642485E-02
0.7202600 0.3320600 0.1461763 0.1730000 0.8600000

-0.1045000 -3.9499998E-02 O.OOOOOOOE+00 -5.1126067E-02 0 0
"0.7181700 0.3312700 0.1457343 0.1730000 0.8700001

-0.1045000 -3.9499998E-02 O.OOOOOOOE+00 -4.8678163E-02
0.7160800 0.3304800 0.1445923 0.1730000 0.8800001

-0.1045000 -3.9499998E-02 O.OOOOOOOE+00 -4.6315495E-02
0.7139900 0.3296900 0.1432926 0.1730000 0.8900000
-0.1045000 -3.9499998E-02 O.OOOOOOOE+00 -4.4054989E-02
0.7119000 0.3289000 0.1426118 0.1730000 0.9000000
-0.1045000 -3.9499998E-02 O.OOOOOOOE+00 -4.1917566E-02
0.7098100 0.3281100 0.1421603 0.1730000 0.9100000

-0.1045000 -3.9499998E-02 O.OOOOOOOE+00 -3.9924506E-02
0.7077200 0.3273200 0.1410731 0.1730000 0.9200000
-0.1045000 -3.9499998E-02 O.OOOOOOOE+00 -3.9600004E-02
0.7056299 0.3265300 0.1400583 0.1730000 0.9300001

-0.1045000 -3.9499998E-02 O.OOOOOOOE+00 -3.9510000E-02
0.7035400 0.3257400 0.1391144 0.1730000 0.9400001

-0.1045000 -3.9499998E-02 O.OOOOOOOE+00 -3.9501000E-02
0.7014500 0.3249500 0.1386819 0.1730000 0.9500000
-0.1045000 -3.9499998E-02 O.OOOOOOOE+00 -3.9500102E-02
0.6993600 0.3241600 0.1382512 0.1730000 0.9600000
-0.1045000 -3.9499998E-02 O.OOOOOOOE+00 -3.9500050E-02
0.6972700 0.3233700 0.1378201 0.1730000 0.9700000

-0.1045000 -3.9499998E-02 OO000000E+00 -3.9500013E-02
0.6951800 0.3225800 0.1371844 0.1730000 0.9800000

-0.1045000 -3.9499998E-02 O.OOOOOOOE+00 -3.9500002E-02
0.6930900 0.3217900 0.1365612 0.1730000 0.9900001

-0.1045000 -3.9499998E-02 O.OOOOOOOE+00 -3.9500002E-02
0.6910000 0.3210000 0.1360000 0.1730000 1.000000

-0.1045000 -3.9499998E-02 O.OOOOOOOE+00 -3.9500002E-02
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EIGDAT.DAT

6.0647059E-02 8.8983026E-05 6.8855416E-03 6.536667 OO000000E+00
6.3684240E-02 8.8983026E-05 6.8695522E-03 6.551881 2.5400002E-02
6.8529472E-02 8.8851506E-05 6.8535623E-03 6.562312 5.0800003E-02
7.1340531E-02 8.8851506E-05 6.8375724E-03 6.577658 7.6200001E-02

" 7.6994456E-02 8.8569490E-05 6.8215830E-03 6.582604 0.1016000
7.960081BE-02 8.8569490E-05 6.8055927E-03 6.598071 0.1270000

. 8.5256927E-02 8.8013869E-05 6.7896033E-03 6.592833 0.1524000
8.7604173E-02 8.8013869E-05 6.7736134E-03 6.60B396 0.1778000
9.4317921E-02 8.7382512E-05 6.7576235E-03 6.600231 0.2032000
9.6415177E-02 9.7382512E-05 6.7416341E-03 6.615885 0.2286000
0.1017893 8.6757384E-05 6.7256447E-03 6.607850 0.2540000
0.1035632 8.6757384E-05 6.7096548E-03 6.623597 0,2794000
0.1087184 8.6105581E-05 6.6936645E-03 6.614432 0.3048000
0.1137591 8.5423031E-05 6.6776746E-03 6.603940 0.3302000
0.1187084 8.4712090E-05 6.6616852E-03 6.592187 0.3556000
0.1198525 8.4712090E-05 6.6456958E-03 6.608047 0.3810000
0.1244744 8.3983767E-05 6.6297054E-03 6.595448 0.4064000
0.1252615 8.3983767E-05 6.6137160E-03 6.611393 0.4318000

-J 0.1296154 8.3224055E-05 6.5977266E-03 6.597372 0.4572000
0.1337847 8.2443687E-05 6.5817363E-03 6.582321 0.4826000
0.1340540 8.2443687E-05 6.5657464E-03 6.598351 0.5080000
0.1395644 8.1517224E-05 6.5497565E-03 6.577191 0.5334000
0.1433241 8.0679114E-05 6.5337671E-03 6.559304 0.5588000
0.1430794 8.0679114E-05 6.5177777E-03 6.575396 0.5842000
0.1464638 7.9823119E-05 6.5017878E-03 6.556505 0.6095999
0.1497292 7.8950136E-05 6.4857975E-03 6.536631 0.6350000
0.1489915 7.8950136E-05 6.4698076E-03 6.552785 0.6604000
0.1495869 7.8210236E-05 6.4538182E-03 6.538166 0.6858000
0.1522908 7.7308760E-05 6.4378288E-03 6.516521 0.7112000
0.1511127 7.7308760E-05 6.4218389E-03 6.532746 0.7366000
0.1535052 7.6391989E-05 6.4058490E-03 6.510106 0.7620000
0.1557640 7.5459597E-05 6.3898596E-03 6.486446 0.7874000
0.1541750 7.5459597E-05 6.3738693E-03 6.502719 0.8128000
0.1576486 7.4318094E-05 6.3578798E-03 6.469576 0.8382000
0.1594573 7.3343632E-05 6.3418900E-03 6.443226 0.8636000
0.1574773 7.3343632E-05 6.3259001E-03 6.459512 0.8890000

0.1590750 7.2360468E-05 6.3099107E-03 6.432330 0.9144000
0.1605356 7.1355011E-05 6.2939208E-03 6.403712 0.9398000
0.1582313 7.1355011E-05 6.2779314E-03 6.420022 0.9651999
0.1594598 7.0339454E-05 6.2619410E-03 6.390450 0.9905999
0.1569867 7.0339454E-05 6.2459512E-03 6.406809 1.016000
0.1579448 6.9313348E-05 6.2299618E-03 6.376229 1.041400
0.1553247 6.931334BE-05 6.2139719E-03 6.392637 1.066800
0.1562122 6.8270892E-05 6.1979825E-03 6.360750 1.092200
0.1582221 6.6992819E-05 6.1819926E-03 6.317228 1.117600
0. 1553432 6.6992819E-05 6.1660022E-03 6.333610 1.143000
0.1558514 6.5924200E-05 6.1500128E-03 6.299228 1.168400
0.1528634 6.5924200E-05 6.1340230E-03 6.315648 1.193800
0.1532658 6.4845422E-05 6.1180335E-03 6.280131 1.219200
0.1501778 6.4845422E-05 6.1020437E-03 6.296587 1.244600
0.1504647 6.3753854E-05 6.0860538E-03 6.259768 1.270000
0.1472825 6.3753854E-05 6.0700644E-03 6.27625B 1.295400
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0.1473357 6.2654632E-05 6.0540750E-03 6.238348 1.320800

0.1474176 6.1545128E-05 6.0380846E-03 6.199241 1.346200
0.1440560 6.1545128E-05 6.0220947E-03 6.215701 1.371600
0.1416818 6.1308339E-05 6.0061049E-03 6.220249 1.397000
0.1415223 6.0183753E-05 5.9901155E-03 6.179385 1.422400
0.1380279 6.0183753E-05 5.9741260E-03 6.195924 1.447800
0.1376031 5.9051232E-05 5.9581362E-03 6.153821 1.473200
0.1311838 5.9468290E-05 5.9421458E-03 6.192133 1.498600
0.1305760 5.8342706E-05 5.9261564E-03 6.149800 1.524000
0.1269364 5.8342706E-05 5.9101665E-03 6.166439 1.549400
0.1232809 5.8342706E-05 5.8941771E-03 6.183167 1.574800
0.1223790 5.7212321E-05 5.8781868E-03 6.139630 1.600200
0.1185820 5.7212321E-05 5.8621974E-03 6.156377 1.625600
0.1182041 5.5833039E-05 5.8462080E-03 6.098349 1.651000

a, 0.1142111 5.5833039E-05 5.8302176E-03 6.115075 1.376400
0.1128017 5.4682685E-05 5.8142282E-03 6.068393 1.701800
0.1086247 5.4682685E-05 5.7982379E-03 6.085129 1.727200
0.1044047 5.4682685E-05 5.7822485E-03 6.101955 1.752600
0.1025161 5.3528674E-05 5.7662590E-03 6.053966 1.778000
9.8084621E-02 5.3528674E-05 5.7502692E-03 6.070800 1.603400
9.3602777E-02 5.3528674E-05 5.7342788E-03 6.087729 1.828800
9.1228902E-02 5.2364765E-05 5.7182894E-03 6.038017 1.854200
8.6997099E-02 5.2124720E-05 5.7022995E-03 6.041054 1.879600
8.2188934E-02 5.2124720E-05 5.6863101E-03 6.058041 1.905000
7.7329591E-02 5.2124720E-05 5.6703202E-03 6.075124 1.930400

7.4158870E-02 5.0953389E-05 5.6543304E-03 6.023462 1.955800
6.9067895E-02 5.0953389E-05 5.6383410E-03 6.040545 1.981200
6.3940190E-02 5.0953389E-05 5.6223506E-03 6.057724 2.006600
5.8785118E-02 5.0953389E-05 5.6063612E-03 6.075001 2.032000
5.4849561E-02 4.9779366E-05 5.5903713E-03 6.021780 2.057400
4.9524274E-02 4.9779366E-05 5.5743814E-03 6.039054 2.082800
4.4355199E-02 4.9546135E-05 5.5583920E-03 6.042220 2.108200
3.9037491E-02 4.9546135E-05 5.5424022E-03 6.059652 2.133600
3.4477953E-02 4.8359714E-05 5.5264127E-03 6.003982 2.159000
2.8421409E-02 4.8926267E-05 5.5104224E-03 6.056574 2.184400
2.3347948E-02 4.8926267E-05 5.4944325E-03 6.074200 2.209800
1.8424919E-02 4.8926267E-05 5.4784431E-03 6.091928 2.235200
1.3689524E-02 4.8926267E-05 5.4624532E-03 6.109760 2.260600
9.1878707E-03 4.8926267E-05 5.4464638E-03 6.127696 2.286000
4.9673668E-03 4.8926267E-05 5.4304739E-03 6.145739 2.311400

3.9732709E-03 4.7530641E-05 5.4144836E-03 6.075341 2.336800
3.784947BE-03 4.7530641E-05 5.3984933E-03 6.093337 2.362200
3.7761207E-03 4.7530641E-05 5.3825048E-03 6.111437 2.387600

3.7853597E-03 4.7530641E-05 5.3665149E-03 6.129646 2.413000
3.7965600E-03 4.7530641E-05 5.3505250E-03 6.147964 2.438400
3.9078506E-03 4.7530641E-05 5.3345351E-03 6.166392 2.463800
3.8192752E-03 4.7530641E-05 5.3185457E-03 6.184930 2.489200
3.8307908E-03 4.7530641E-05 5.3025563E-03 6.203590 2.514600
3.6964428E-03 4.7315221E-05 5.2865660E-03 6.208228 2.540000
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PVSWR.DAT

9.400000 1.366806

8.495999 1.360496 ".

8.592000 1.335621

8.b89000 1.312075
8.794000 1.299767

9.880000 1.268615
8.976000 1.248548
9.072000 1.229506

9.168000 1.211434

9.264000 1.194281

9.360000 1.177998 "

9.456000 1.162550
9.552000 1.147899

9.648000 1.134008

9.744000 1.120849
9.840000 1.108394

9.936000 1.096617
10.03200 1.085500
10.12800 1.075025
10.22400 1.065181 r

10.32000 1.055962
10.41600 1.047380
10.51200 1.039461

10.60800 1.032271
10.70400 1.025941

10.80000 1.020730

10.996oo 1.017095
10.99200 1.015596

11.08800 1.016362
11.18400 1.01878

11.28000 1.022060
11.37600 1.025675

11.47200 1.029344

11.56800 1.032919

11.66400 1.036318
11.76000 1.039505

11.65600 1.042452
11.95200 1.045149

12.04800 1.047591

12.14400 1.049772
12.24000 1.051700

12.33600 1.053375

12.43200 1.054802

12.52800 1.055988
12.62400 1.056941

12.72000 1.057667

V 12.91600 1.058175
12.91200 1.058472

'13.00800 1.058569

4 13.10400 1.058473

13.20000 1.058195

13.29600 1.057744
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13.39200 1.057128
13.48800 1.056356
13.58400 1.055440
13.68000 1.054389
13.77600 1.053209
13.87200 1.051913
13.96800 1.050509
14.06400 1.049005
14.16000 1.047411
14.25600 1.045736
14.35200 1.043987
14.44800 1.042176
14.54400 1.040308
14.64000 1.038393
14.73600 1.036438
14.83200 1.034452
14.92800 1.032442
15.02400 1.030416
15.12000 1.028383
15.21600 1.026349
15.31200 1.024323
15.40800 1.022313
15.50400 1.020329
15.60000 1.018381
15.69600 1.016481
15.79200 1.014645
15.88800 1.012891
15.98400 1.011249
16.08000 1.009754
16.17600 1.008466
16.27200 1.007464
16.36800 1.006838
16.46400 1.006659 A
16.56000 1.006924
16.65600 1.007553
16.75200 1.008432
16.84800 1.009464 -"

16.94400 1.010577
17.04000 1.011725
17.13600 1.012876
17.23200 1.014010
17.32800 1.015115
17.42400 1.016177
17.52000 1.017191
17.61600 1.018152
17.71200 1.019056
17.80800 1.019900
17.90400 1.020680
18.00000 1.021397
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SPARAM. DAT
8.400000

(0.1117673,0.1173524) (-0.9621535,-0.2190810)
(-0.9621542,-0.2190819) (-0.1515571,5.7394091E-02)
8.495999

(0.1125035,0.1032788) (-0.9777583,-0.1437519)
(-0.9777579,-0.1437549) (-0.1374bB9,6.6528171E-02)
8.592000

(0. 1120010,9.0025296E-02) (-0.9872565,-6.8376124E-02)
(-0.9872574,-6.8378299E-02) (-0.1233421,7.372605LE-02)
8.688000

(0. 1104124,7.7637993E-02) (-0.9908267,6.6189100E-03)
(-0.9908268,6.6208006E-03) (-0.1093659,7.9106092E-02)
8.784000

(0.1078841,6.614802BE-02) (-0.9886613,8.0831885E-02)
(-0.9886622,8.0832034E-02) (-9.570723BE-02,B.2793549E-02)
8.880000

(0.1045513,5.55764b6E-02) (-0.9809687,0.1538844)
(-0.9809697,0.1538830) (-B.2511701E--02,B.49206B9E-02)
B.976000

(0.1005426,4.5930579E-02) (-0.9679709,0.2254196)
(-0.967970B,0.2254197) (-6.9906e31E-02 , 8.5624255E-02)
9.072000

(9.598001 1E-02,3.7209637E-02) (-0. 949B990,0.2951175)
(-0. 9498993,0.295118I6) (-5.7996843E-02,8. 5047b18E-02)
9. 168000

(9.0976208E-02,2.9402930E-02) (-0.9270008,0.3626694)
(-0.9270009,0.3626684) (-4.6871435E-02,8.3332255E-02)
9.264000

iB.5635200E-02,2.2491097E-02) (-0.8995230,0.4278067)
(-0.8995221,0.4278093) (-3.6594670E-02,8.0b233bbE-02)

9.360000
(B.0052875E-02,1.6449761E-02) (-0.8677302,0.4902711)
(-0.8677298,0.4902718) (-2.7219538E-02,7.7059306E-02)
9.456000

(7.4319802E-02,1. 1247266E-02) (-0.8319903,0.5498251)
(-0.8318903,0. 5498261) (-1 .B7B2152E-02,7. 27B1891E-02)

(6.8516247E-02,6. 8462300E-03) (-0. 7922795,0.6062606)
(-0.792277B,0.6062622) (-1.1301333E-02,6.7923509E-02)
9. 648000

(b.271434bE-02,3.2056409E-03) (-0. 7491630,0.6594013)
(-0. 7491652,0.65931999) (-4. 7814809E-03,6.2614240E-02)
9. 744000

(5.69B084BE-02,2.B8119091E-04) (-0.702B353,0.7090666)

(-0. 702B392,0. 7090626) (7.841244BE-04,5.6975521E-02)
9.840000

(5. 1372845E-02,-1.9736623E-03) (-0.6535717,0.7551165)
-0.65356B4,0.7551:83) (5.4143695E-03,5. 11245S0E-02)
9.936000

(4.59409B8E-02,-3.6091241E-03) (-0. 6016572,0.7974241)
(-0.6016585,0.7974226) (9. 1395611E-03,4.5167122E-02)
10.03200

(4.0729750E-02,-4. 6761045E-03) (-0.5473729,0.8358838)
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(-0.5473739,0.8358832) (1.199577SE-02,3.9202962E-02)
10.12800

(3.5776742E-02,-5.2250270E-03) (-0.4910094,0.8704033)
(-0.4910096,0.8704034) (1.4031467E-02,3.3322617E-02)

10.22400
(3.1111963E-02,-5.3094020E-03) (-0.4328377,0.9009192)
(-0.4328385,0.9009186) (1.5297516E-02,2.7606755E-02)
10.32000

(2.6760191E-02,-4.979449BE-03) (-0.3731494,0.9273719)
(-0.3731485,0.9273723) (1.5853811E-02,2.21261S1E-02)
10.41600 

.A

(2.2741562E-02,-4.2865803E-03) (-0.3122055,0.9497324)
(-0.3122081,0.9497321) (1.5762232E-02,1.6943250E-02)
10.51200

(1.9068822E-02,-3.2807277E-03) (-0.2503003,0.9679750)
(-0.2502979,0.9679755) (1.5088214E-02,1.2113265E-02)
10.60800

(1.5751589E-02,-2.0104183E-03) (-0.1876745,0.9821028)
(-0.1876734,0.9821035) (1.3900214E-02,7.676438OE-03)
10.70400

(1.2793760E-02,-5.2206113E-04) (-0.1246102,0.9921234)
(-0.1246101,0.9921231) (1.2267112E-02,3.6693804E-03)
10.80000

(1.0194955E-02,1.1395689E-03) (-6.1360449E-02,0.9980632)
(-6.1358325E-02,0.9980632) (1.0258146E-02,1.1787016E-04)
10.89600

(7.9516694E-03,2.9320165E-03) (1.8257959E-03,0.9999622)
(1.8280762E-03,0.9999624) (7.9410020E-03,-2.9608773E-03)
10.99200

(6.0564550E-03,4.8158932E-03) (6.4708143E-02,0.9978740)
(6.4709552E-02,0.9978738) (5.3838054E-03,-5.5576507E-03) '
11.08800

(4.4990922E-03,6.7532999E-03) (0.1270497,0.9918628)
(0.1270450,0.9918640) (2.6514668E-03,-7.6690544E-03)
11.!9400

(3.266238BE-03,8.7106302E-03) (0.1886082,0.9820082)
(0.1986066,0.9820088) (-1.9339587E-04,-9.3008662E-03)

11.28000
(2.3419673E-03, 1.0655509E-02) (0.2491723,0.9683977)
(0.2491721,0.9683977) (-3.0919253E-O3,-1.0462451E-02)
11.37600

(1.7084021E-03,1.255904SE-02) (0.3085276,0.9511308)
(0.3085228,0.9511328) (-5.9892759E-03,-1.1170791E-02)

11. 47200
(1.3473446E-03, 1.4396776E-02) (0.3664681,0.9303185)
(0.3664690,0.9303181) (-8.8333106E-03,-1.1448103E-02)
11.56800

(1.2371755E-03, 1.6145406E-02) (0.4228041,0.9060763)
(0.4228050,0.9060761) (-1.1578434E-02,-1.1319584E-02)
11.66400

(1.3571010E-03, 1.7783500E-02) (0.4773310,0.8785419)
(0.4773280,0.8785439) (-1.4181690E-02,-1.0815879E-02) .5-.

11.76000
(1.6832743E-03,1.9296775E-02) (0.5298963,0.8478417)
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(0.5298942,0.8478423) (-1.6607683E-02,-9.9692577E-03)

11.85600I
(2.1942756E-03,2.066B905E-02) (0.5803131,0.8141282)
(0.5803130,0.8141285) (-1.882285BE-02,-8.8160457E-03)
11.95200

(2.8645562E-03,2.1889631E-02) (0.62B4368,0.7775474)
(0.6284371,0.7775475) (-2.0801842E-02,-7.3920032E-03)
12.04800

(3.6732398E-03,2.2950221E-02) (0.6741149,0.7382606)
(0.6741119,0.7382634) (-2.2522807E-02,-5.7388390E-031
12.14400

(4.5959312E-03,2.3842940E-02) (0.7171994,0.6964446)

(0.7171991,0.6964450) (-2.3967544E-02,-3.8937540E-03)
12.24000

(5.6102392E-03,2.4566106E-02) (0.7575862,0.6522481)
(0.7575880,0.6522468) (-2.5127161E-02,-1.8974184E-03)

12.33600
(6.6939294E-03,2.5116965E-02) (0.7951410,0.6058667)
(0.7951396,0.6058693) (-2.5992554E-02,2.1105599E-04)
12.43200

(7.8269243E-03,2.5495838E-02) (0.8297742,0.5574611)
(0.8297738,0.5574615) (-2.6562475E-02,2.3918946E-03)
12.52800

(8.98808S0E-03,2.5705658E-02) (0.8613789,0.5072331)
(0.8613781,0.5072348) (-2.6838781E-02,4.6084910E-03)
12.62400

(1.0158765E-02,2.5750922E-02) (0.8898757,0.4553622)
(0.889B748,0.4553646) (-2.6828013E-02,6.8242606E-03)
12.72000

(1.1321092E-02,2.5637235E-02) (0.9151924,0.4020407)
(0.9151925,0.4020411) (-2.6539642E-02,9.0051256E-03)
12.81600

(1.2457461E-02,2.5372019E-02) (0.9372662,0.3474669)
(0.9372661,0.3474671) (-2.5985766E-02,1.1119625E-02)
12.91200

(1.3553559E-02,2.4963653E-02) (0.9560489,0.2918290)
(0.9560509,0.2918226) (-2.5184194E-02,1.3139052E-02)
13.00800

(1.4595901E-02,2.4422115E-02) (0.9715022,0.2353172)
(0.9715041,0.2353090) (-2.4153737E-02,1 .5035833E-02)
13.10400

(1.5571354E-02,2.3757981E-02) (0.9835988,0.1781195)
(0.9835985,0.1781229) (-2.2913910E-02,1.6788812E-02)
13.20000

(1.6468560E-02,2.2983823E-02) (0.9923156,0.1204580)
(0.9923162,0.1204545) (-2.1489425E-02,1.8376049E-02)
13.29600

(1.7279711E-02,2.2110673E-02) (0.9976493,6.2516995E-02)
(0.9976496,6.2513031E-02) (-1.9904645E-02,1.9780476E-02)
13.39200

(1.7995946E-02,2.1150874E-02) (0.999604414.4866577E-03)
(0.9996043,4.4858246E-03) (-1.8184863E-02,2.0988667E-02)

13. 48800
(1.8610945E-02,2. 0117678E-02) (0.9981942,-5.3450249E-02)
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(0.9981948,-5.3449791E-02) (-1.6356043E-02,2.1990042E-02)
13.58400

(1.911975SE-02,1.9024707E-02) (0.9934451,-0.1110824)
(0.9934462,-0.1110792) (-1.4445409E-02,2.2777800E-02)
13.69000

(1.9520009E-02,1.7884593E-02) (0.9853925,-0.1682300)
(0.9853922,-0.1682298) (-1.2480588E-02,2.3347927E-02)

13. 77600
(1.980B996E-02,1.6709097E-02) (0.9740784,-0.2247203)
(0.9740784,-0.2247225) (-1.0486751E-02,2.3698302E-02)
13.87200

(1.9985864E-02,1.5512803E-02) (0.9595641,-0.2803511)
(0.9595637,-0.2803516) (-8.4904581E-03,2.3832725E-02)
13.96800

(2.0051392E-02,1.4306905E-02) (0.9419075,-0.3349680)
(0.9419074,-0.3349677) (-6.515422BE-03,2.3754729E-02)
14.06400

(2.0007469E-02,1.3103309E-02) (0.9211859,-0.3683863)
(0.9211857,-0.3883878) (-4.5866026E-03,2.3472317E-02)

14. 16000
(1.9856857E-02,1.1913795E-02) (0.8974822,-0.4404422)
(0.8974825,-0.4404424) (-2.7246689E-03,2.2995798E-02)
14.25600

(1.9603299E-02,1.074855SE-02) (0.8708972,-0.4909744)
(0.8708873,-0.4909736) (-9.5143204E-04,2.2336582E-02)
14.35200

(1.925184SE-02,9.6174562E-03) (0. 8414994,-0.5398288)
(0.8414994,-0.5398285) (7.1568845E-04,2.1508692E-02)
14.44800

(1.8808600E-02,B.5303327E-03) (0.8094351,-0.58B68465)
(0.B094350,-0.5868466) (2.2593676E-03,2.0528750E-02)
14.54400

(1.8279135E-02,7.4948603E-03) (0.7747916,-0.6319085)
(0.7747915,-0.6319090) (3.6665241E-03,1.9412834E-02)
14.64000

(1.7670654E-02,6.5197311E-03) (0.7377092,-0.6748545)
(0.7377083,-0.6748569) (4.9243635E-03,1.8180005E-02)
14.73600

(1.6990878E-02,5.6103249E-03) (0.6983085,-0.7155725)
(0.6983079,-0.7155737) (6.0232584E-03,1.6849030E-02)

14.83200
(1.6247939E-02,4.7726869E-03) (0.6567292,-0.7539364)
(0.6567296,-0.7539366) (6.9561149E-03,I.5439859E-02)
14.92800

(1.545000SE-02,4.0104548E-03) (0.6131005,-0.7898440)
(0.6131012,-0.7898430) (7.7171684E-03,1.3972549E-02)
15.02400

(1.4605707E-02,3.3296335E-03) (0.5675922,-0.8231732)
(0.5675898,-0.8231760) (8.3048651E-03,1.2467677E-02)
15.12000

(1.3723611E-02,2.7313598E-03) (0.5203235,-0.8538549)
(0.5203249,-0.8538533) (8.7187141E-03,1.0944551E-02)
15.21600

(1.2812638E-02,2.2182921E-03) (0.4714787,-0.8817816)
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(0.4714800,-0.8817813) C8.9602889E-03,9.4234049E-03)
15. 31200

(1. 1881074E-02,1.7913808E-03) (0.4212167,-0.9068607)
(0.4212141,-0.9068813) (9.0332972E-03,7.9225609E-03)

15. 40800
(1.0937320E-02,1.4509220E-03) (0.3696674,-0.9290989)
(0.3696675,-0.9290984) (8.9446194E-03,6.4596324E-03)

15. 50400
(9.9910377E-03,1.1954672E-03) (0.3170410,-0.9483583)
(0.3170418,-0.9483584) (8.7013012E-03,5.0533540E-03)

15. 60000
(9.048734SE-03,1.0245877E-03) (0.2634658,-0.9646257)
(0.2634663,-0.9646257) (8.3133159E-03,3.717S133E-03)

15.69600
(8. 1195952E-03,9.3581091E-04) (0.2091443,-0.9778506)
(0. 2091438,-0.9778512) (7.7920314E-03,2. 4b74323E-03)

15.79200
(7.2100945E-03,9.2572690E-04) (0.1542246,-0.9880092)
(0.1542242,-0.9880095) (7.1491729E-03,1.3154999E-03)

.4'..15.88800

(6. 3271616E-03,9.913240SE-04) (9. 8894700E-02,-0.9950770)
(9.889667E-02,-0.9950770) (6.3984897E-03,2.7323177E-04)
15.98400

(5.4778936E-03,1.1289094E-03) (4.3314267E-02,--0.9990461)
(4.TW318227E-02,-0.9990457) (5.554B712E-03,-6.5072661E-04)

.4". 16.08000
(4.6668719E-03,1.3330920E-03) (-1.2329667E-02,-0.9999124)
(-1.2333964E-02,-0.9999121) (4.6325824E-03, -1. 4477773E-03)

16. 17600
(3.9003449E-03,1.5990353E-03) (-6.7883283E-02,-0.9976846)
(-6.788121L-E-02,-0.9976840) (3.6476655E-03,-2.1126133E-03)

j%.4 16.27200

"4.(3.1829933E-03,1.92153S0E-03) (-0.1231601,-0.9923795)
(-0.12315971-0.992-v797) (2.bl65834E-03,-2.641477bE-03)

16. 36800
*(2.5185787E-03,2.2949139E-03) (-0.1780029,-0.9840239)

(-0. 1780028,-0. 9840238) (1.5548397E-03, -3.0318049E-03)
16.46400

(1.9108233E-03,2.71309b6E-03) (-0.2322484,-0.9726511)
(-0.2322487,-0.9726509) (4.78b8307E-04,-3.2837493E-03)

16. 56000
(1.362b114E-03,3. 1696118E-03) (-0.2857049,-0.9583113)
(-0.2857063,-0.9583109) (-5.95652b7E-04,-3.3983923E-03)

-. . 16.65600
(8. 75765IIE-04,3.65Bg052E-03) (-0.3382418,-0.9410517)
(-0. 3382428,-0. 9410510) (-1. 6540725E-03,-3. 3791540E-03)

16. 75200
(4.5i9b188E-04,4. 1737b45E-03) (-0.3896937,-0.9209350)
(-0.3896935,-0.9209347) (-2.6812442E-03,-3.2304213E-03)
16.94800

~, .~ (9. 2306254E-05, 4. 7086221E-03) (-0. 4399188,-0. 8980247)
(-0.4399184,-0.8980258) (-3.6638586E-03,-2.9590100E-03)

16. 94400
(-2.0387334E-04,5.256615bE-03) (-0.4887539,-0.8724062)
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(-0.4887477,-0.8724095) (-4.58932SIE-03,-2.5712170E-o3)
4. 17.04000

(-4.3541065E-04,5.8118207E-03) (-0.5360438,-0.8441700)
(-0.5360470,-0.8441678) (-5.4451725E-03,-2.0775753E-03)

17. 13600
(-6.0399750E-04,6.3684662E-03) (-0.5816740,-0.8133972)
(-0.58167410-0.8133960) (-6.2216790E-03,-1.4872552E-03)
17.23200

(-7.1176427E-04,6.9199516E-03) (-0.6255097,-0.7801852)
(-0.6255079,-0.7801870) (-6.9094244E-03,-8.0975861E-04)

17. 32800
(-7.5944187E-04,7.4b21327E-03) (-0.6674084,-0.7446541)
(-0.6674093,-0.7446533) (-7.5003146E-03,-5.9145659E-05)
17.42400

(-7.5003027E-04,7.988277SE-03) (-0.7072648,-0.7069036)
(-0.7072658,-0.7069025) (-7.9878466E-03,7.5410435E-04)

17. 52000
(-b.6581803E-04,8.4946817E-03) (-0.7449536,-0.6670628)
(-0.7449560,-0.6670592) (-8.3676111E-03, 1.6159732E-03)
17.61600

(-5.6950748E-04,8.9763245E-03) (-0.7803729,-0.6252490)
(-0.7803739, -0.6252488) (-8.6360276E-03,2.5132750E-03)

17. 71200
(-4. 06563b9E-04,9. 4291102E-03) (-0. 8134216,-0.5815986)
(-0.8134203,-0.5815997) (-8.7908590E-03,3.4343468E-03)

17. 80800
(-1.9931207E-04,9.8498920E-03) C-0.8440076,-0.5362407)
(-0.89440095,-0.53362371) (-8. 8321501E-03,4. 3649161E-03)

17. 90400
(4.758191SE-05, 1.0234153E-02) (-0. 8720467,-0.4893166)
(-0.8720468,-0.4893157) (-8.7596495E-03,5.2922373E-03)
18.00000

(3.3033188E-04,1.0580279E-02) (-0.8974621,-0.4409642)
*(-0.8974622,-0.4409644) (-8.5770553E-03,6.2036063E-03)
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APPENDIX D

COUPLING COEFFICIENT FOR A TE 10-45 DEGREE TAPERED RECTANGULAR WAVEGUIDE i

The following derivation uses analytical techniques to determine

the eigenvalue, eigenfunction and coupling coefficient of a rectangular

waveguide having a constant width a, and tapered height b.

$A Y

b2
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t fin R

isa 0 on C(x,y,z) 
(D.2)

A~ Cosn mn a o b (D.3)

(p [m A 'il nira

which can be written for TE10 modes as

Eq. D.4 is the elgenfunction, and its eigenvalue is given by

h =L(D.5)

10 a

The unknown normalization constant A10 can be determined using Solymar's

normalization
5

f b f Ia[e~]l1 da -1 (D.6)
0 0

where

e -, e[] =zo xV t [0 (D.7)

1101eniain [1t010

'a a

1201
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and substituting the result into Eq. D.7 yields

+ 71 lrX
e -- A -sin - y (D.9)
[10] 10a a

which can be used in Eq. D.6 to solve for A10 as

b a 2

f A2712sin -xdx dy _____

0 0 0 a ab z i 2 A2 a
10 sin 2-rxdx

2 a
a 0

bzi A10  (D.10)

Thus

-~A 2a 1/ (D. 11)
10 (b7

According to Appendix A, the backward coupling coefficient for the TE 10

mode is

- 1~4 )2n ds

D.12)

Since only the top and bottom of the waveguide are tapered, the sides do

not contribute to the contour integral and Eq. D.12 can be rewritten as

,
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2 al a \ 2
St o - f tan e(\ 01 ds
[1011 - 2 0 as

al 2
- tan -sin aX dx

Ox" a .,

tan 0
- - -(D-13)

b(z)

The rule for the sign of tan 0 is: walls that taper towards the

z-axis have negative 0 , those that taper away have positive 0. This

stems from the following expression for tan 0,

tan 6 b2 - bl (D.14)4 a = 2 L( D .1 ) e

2L

Substituting Eq. D.14 into Eq. D.13 gives the final expression for the

TE1 0 backward coupling coefficient of a rectangular waveguide having

constant width and tapered from bl to b2.

S [b[0 = 2bl - b2
2 Sz (D.15)

S [10][10] 2 b(z)t .

In Section III, Eq. D.15 is used as the standard against which computed

results were compared. The test case is that of a waveguide like the

one shown in Fig. D.1, having a taper of 0 = -45*. The coupling coeffi-

cient can be directly computed from Eq. D.15 as

S= (D.16)
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A general equation for the linear variation of waveguide height with

axial position z is

b(z) - bi (L - Z) + b2 (D.17)
L L

In the example of Section III, the cross section referred to could be at

any position along the z-axis. For the case of this example, z = 0 and

-'b(z) = bl (D.18)

thus

- 1 7,

The results of changing the mesh size of a (10 x 20) cm rectangular

waveguide are shown in Table 1. Since bl = 10.0 for this case,

S[= 0.1 cm (D.20)
[10] [10]

It is clear that the computer program accurately calculates the coupling

coefficient of nonridged waveguides to within ~ 0.3 percent.
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APPENDIX E

FIELD NORMALIZATION

In order to obtain a correct value for the coupling coefficient

S[101[10] , the numerically obtained eigenfunction must be properly

normalized. The proper normalization equation is given in Section II by

Eq. 6.

f lx,y,z) Iepf 2 da- 1 (E.1)

By using standard vector identities, the two-dimensional form of Green's

Theorem
17

4

f 2 V +2t -da = a 0 n da (E.2)

A tt C 3 n

the Helmholtz Wave Equation

+2 2
V t p + h = 0

and either of Eqs. 4 or 5 with their appropriate boundary conditions, it

can be shown that Eq. E.1 reduces to

f Jp 2 da =1I (E.3)
A h 2 (E3

p

The numerically obtained field configuration pN can be normalized by

integrating its magnitude squared over the guide cross section A with r
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I-.

the result

''2
Af'' da =p (E.4) .

In order to match the field normalizations, it is necessary that :-

'P = (E.5)
h (p)1/2

The finite-difference algorithm in the ridged waveguide program con-

verges to the value

u2 h2 =X (E.6)

p p

thus

r 1/2

u - (E.7)
p h

Since up is the numerical approximation of Solymar's hp, Eq. E.7 can be

substituted into Eq. E.5 and

h
.p = *pN  (E.8).':',.. pN )1/ 2

Using Eq. E.8, every numerically obtained field poiit can be scaled to

Solymar's normalization. This puts the mode eigenfunction in the appro-

priate form for computing Solymar's coupling coefficients.
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